
Detecting Tangled Logic Structures in VLSI Netlists

Tanuj Jindal∗, Charles J. Alpert‡, Jiang Hu∗, Zhuo Li‡, Gi­Joon Nam‡, Charles B. Winn‡‡

∗ Department of ECE, Texas A&M University, College Station, Texas
‡ IBM Austin Research Lab, Austin, Texas

‡‡IBM Systems and Technology Group, Essex Junction, Vermont

ABSTRACT

This work proposes a new problem of identifying large and tangled
logic structures in a synthesized netlist. Large groups of cells that
are highly interconnected to each other can often create potential
routing hotspots that require special placement constraints. They
can also indicate problematic clumps of logic that either require
resynthesis to reduce wiring demand or specialized datapath place-
ment. At a glance, this formulation appears similar to conventional
circuit clustering, but there are two important distinctions. First,
we are interested in finding large groups of cells that represent en-
tire logic structures like adders and decoders, as opposed to clusters
with only a handful of cells. Second, we seek to pull out only the
structures of interest, instead of assigning every cell to a cluster
to reduce problem complexity. This work proposes new metrics
for detecting structures based on Rent’s rule that, unlike traditional
cluster metrics, are able to fairly differentiate between large and
small groups of cells. Next, we demonstrate how these metrics
can be applied to identify structures in a netlist. Finally, our ex-
periments demonstrate the ability to predict and alleviate routing
hotspots on a real industry design using our metrics and method.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids

General Terms

Algorithms,Design

Keywords

Rent Rule, Clustering, Tangled Logic, Congestion Prediction

1. INTRODUCTION
During logic synthesis, high-level logic structures are translated

into groups of logic gates. This synthesized netlist is then handed
off to a place-and-route physical design flow. During this handoff,
information about the origin of the logic that created the gates can
be lost, especially if one switches from one tool vendor to another.

Most of the placement literature and all academic placers (e.g., [1]
[2]) also assume that logic information is absent and operate purely
at the gate level, instead of relying on hierarchical information.

During this handoff between synthesis and placement, logic may
be synthesized in such a way that it might require special care from
the placement engine to obtain high quality results. Certain groups
of logic will invariably have a higher degree of inter-connectivity
than other groups. Let GTL denote a group of tangled logic. The
automatic detection of GTLs has several potential applications:

• Routability. Since a GTL has high interconnectivity, place-
ment engine will naturally want to pull the cells tightly to-
gether which often will create a routing hotspot. Figure 1
shows a routing congestion map of a placed industrial de-
sign, in which the routing hotspots in the upper part of the
design are caused by tangled logic structures that are placed
too closely together. Later we show how simple process of
cell inflation in a GTL can mitigate routing congestion.

• Floorplanning. Since a GTL will stay together during place-
ment, the designer may wish to form a soft block for the gates
in the GTL. Then during placement, the soft block can be
translated into placement constraints (like attractions, forces,
or move bounds) to drive placement to a higher quality solu-
tion.

• Logic re-synthesis. Synthesis will typically try to instanti-
ate logic in the most compact form possible, yet this is one of
the reasons why logic structures can be so tangled. Prior to
placement, a GTL could be resynthesized or re-instantiated
to utilize more area, but less interconnect, thereby reducing
potential hotspots. Applying this technique to a small frac-
tion of the design will not increase area dramatically.

The main problem this work addresses is how to find a GTL.
Before one can find one, one should be able to somehow quantify
how tangled a logic structure actually is. Therefore, we propose
two new metrics derived from Rent’s rule to measure the quality of
a GTL. The first metric allows one to explore the gamut of sizes
between very small and very large cell groups and select the ones
which best optimize the metric. Our second metric extends beyond
Rent’s rule to account for internal connectivity.

The reason a new metric is required is that existing cluster met-
rics cannot properly compare groups of cells of different sizes.
When searching for GTLs one might find structures within struc-
tures, especially as the logic is repeated. We must be able to dis-
tinguish between them so that proper guidance can be given to the
place-and-route tool. Our metrics and algorithm are able to decide
whether we should choose several smaller GTLs or a much larger
GTL which encompasses all the smaller ones. Our new metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

603

36.2

Figure 1: Example of routing hotspots.

are also scaled so that the average score of a typical cluster is one,
and the ones with smaller values (e.g., less than 0.1) correspond to
strong GTLs. This not only permits one to compare groups of dif-
ferent sizes, it also provides a uniform standard that can be utilized
for different designs.

Next we show how one can use the metric to actually find set of
GTLs. Our algorithm starts from a random seed and grows a GTL
by adding cells iteratively. We exploit parallalism to perform sev-
eral such searches simultaneously and prune out the GTL candiates
that are inferior and overlapping, resulting in an independent final
set of identified GTLs.

We validate our metrics and algorithm on random graphs, ISPD
placement benchmarks, and a real industrial design. We demon-
strate that our algorithm can identify GTL’s; and, application of
cell inflation technique, within each GTL found, leads to reduced
congestion in our industrial testcase.

2. RELATED WORK
A GTL and a cluster are both a subset of netlist gates, so it might

seem that one can apply traditional clustering metrics to GTLs.
However, there are some clear differences between the problem
statement of detecting tangled logic structures and cell clustering.

1. Conventional clustering most often provides a reduction in
problem size. These clusters are typically small (e.g., two
to ten cells) so that too much information is not lost in the
reduced problem instance. Clustering in this domain is gen-
erally local in nature [3]; however, this work is interested in
identifying much larger special logic structures, of the or-
der of hundreds to thousands of cells. This requires a more
global view that accounts for both external and internal con-
nections.

2. Conventional clustering requires each cell to belong to a clus-
ter, thereby covering the entire netlist. In contrast, we seek
specific subsets of cells for special handling prior to place-
ment. Thus, we wish to identify only a small fraction of cells
as GTL’s and let place-and-route handle the other cells as it
wishes.

Let the input netlist be represented as a hypergraph G = (V,E)
where V is a set of cells and E is a set of nets, where each e ∈ E is
connected to a subset of V . A clustering is a set of disjoint subsets
of cellsC1,C2, ...,Ck ⊂V such thatV =C1∪C2∪ ...∪Ck. Consider
the literature of clustering metrics.

1. Given a cluster C, the net cut is defined as the size of the set
T (C)= |{e∈E|C∩e 6= /0&(V−C)∩e 6= /0}|. Clustering met-
rics can add the cuts in different ways, but fundamentally cut
is independent of cluster size. It is more suited for top-down
partitioning or placement, where the sizes of the regions are
bounded.

2. Absorption [4] is a metric that counts the number of internal
connections, and this will grow with clsuter size. It is ill-
suited for comparing two clusters as possible GTLs since the
larger cluster will invariably have larger absorption.

3. The Ratio Cut and Scaled Cost metrics [5] both treat the cost

of a cluster as
T (C)
|C| . Since T (C) grows much slower than

cluster size, a larger cluster will almost always have smaller
cost, which makes this a poor way to compare clusters of
different sizes.

4. Ng et al. [6] proposed using the Rent exponent for a cluster
as a way of measuring its quality, which means the cost of

a cluster C is proportional to
lnT (C)
ln |C| . While this is better

than ratio cut, it still monotonically decreases with size as C
grows.

5. Hagen et al. [7] introduced the concept of DS(Degree Sepa-
ration) metric. Degree is average number of nets incident on
each node in the cluster and Separation is average length of
shortest path between any two nodes. They make use of ran-
dom walk to capture globally good circuit clustering. How-
ever, the metric fails to look at the external connection of
cluster. Moreover, the authors used the average value of this
metric to reflect the overall quality of clustering, not for a
single cluster.

6. There are several relatively sophisticated metrics – (K,L)-

connectivity [8], edge separability [9] and adhesion [10], which
are potentially useful for our case. However, these metrics
require long computation time and also do not try to com-
pensate for clusters of different sizes.

In summary, none of the clustering literature compares clusters
of different sizes without biasing towards either smaller or bigger
clusters. Our metrics are the first to do so.

3. METRICS FOR TANGLED LOGIC

STRUCTURES
Our metrics are motivated by the need to (i) compare clusters

of different sizes and (ii) measure the tangledness of the group of
cells. We start with the ratio cut RC and Rent metric Rent for each
cluster C, as discussed previously

RC(C) =
T (C)

|C|
Rent(C) ∝

lnT (C)

ln |C|
.

The problem with both metrics is that the numerator (related to
cut) and the denominator (related to cluster size) do not scale to-
gether. However, from Rent’s rule, we know that T (C) should grow

604

36.2

proportionally to |C|p, where p is the Rent exponent. Thus, we de-
fine the GTL-Score as

GTL-S(C) =
T (C)

|C|p

In general, one would expect this metric to be constant for an av-
erage quality structure. We do not care about tiny clusters with a
handful of cells, nor partitions that consume a huge chunk of the
circuit.

Let A(G) be the total number of pins in G divided by |V |, i.e.,
A(G) is the average pin count of the cell. According to Rent’s rule,
then A(G) is the expected value of GTL-S(C). Algorithmically,
we want to have a rule of thumb about values of our metrics that
identifies a good GTL, and this should be comparable across dif-
ferent netlists. Thus, we further refine our metric to the normalized
GTL-Score

nGTL-S(C) =
T (C)

AG · |C|p

This will cancel out the differences between circuits with many
high fanin versus low fanin gates. With this scaling, the score of
an “average quality group” should be one. However, for a GTL, we
would expect the value to be significantly smaller.

To illustrate how the metric behaves in practice, consider a cell
agglomeration procedure, which picks a random seed cell and then
grows the group by iteratively adding highly connected neighbors.
We illustrate the procedure through a generated random graph with
250000 cells, in which 40000 cells were made more highly con-
nected internally and less connected externally than the rest of the
graph, i.e., the graph had exactly one GTL of size 40000 cells.

Figure 2: Example of nGTL-Score.

Figure 2 shows the nGTL-Score as a function of group size for
two cell agglomerations. The first was in a set of cells outside the
GTL. For this curve, the group starts at a value of 0.3 near group
size 0 and then quickly rises and is asymptotically approaching 0.9.
However, for the second group inside the GTL, the score rises all
the way past 1.5 before dropping precipitously, reaching a local
minimum of about 0.1 once the entire GTL was discovered. Adding
more cells to the GTL that do not belong causes the score to rise
further. The intuition behind this is that, as soon as we include all
cells of a GTL in the group T (C) is much smaller that |C|p. And,
once we start adding cells from outside the T (C) rises to asymptot-
ically follow |C|p as proposed by Rent’s rule.

So far, we have addressed the issue of comparing groups of dif-
ferent sizes, but the metric does not consider internal connectivity.
For a logic structure to be tangled, it should have significantly more

internal connectivity versus external connectivity. Often in a de-
sign, MUX functions or logic look-up tables are synthesized to a
group of complex cells, such as NAND4, OAI, and AOI gates since
they generally give the most function per unit area. These gates
generally have more pins (four or five) than most of the typical
cells, such as AND2/OR2 gates (with three pins). All the connec-
tions required for these gates tend to tangle the logic and make the
design harder to route. We need to capture the notion of pin-density
without disturbing the essence of the normalized GTL metric. We
propose to do so as follows:

GTL-SD(C) =
T (C)

AG · |C|p·AC/AG

where AC is the ratio of the number of pins contained in C divided
by |C|, i.e., it is the average pin count of cells in the group. The
ratio AC/AG is close to one when the number of pins inside C is
typical relative to the rest of netlist. However, if C contains several
complex gates, then this ratio will be higher than one and will re-
flect stronger likelihood of it being a GTL. Mutliplying this value
by the Rent exponent biases the cost function to prefer groups of
cells with higher pin count and consequently, more tangled logic.
This will also provide a check for large cell groups and will identify
them as GTL only if they have high density.

Figure 3: Example of density-aware GTL-Score.

Figure 3 shows the same curves as in Figure 2 but with our final
GTL-SD score. Comparing the two figures shows that both metrics
can reveal the known GTL with 40000 cells. However, the contrast
of the local minimum of the GTL-SD score is more dramatic than
the original metric.

4. A METHOD TO FIND GROUPS OF

TANGLED­LOGIC
Based on our new metrics, we propose a straightforward algo-

rithm (tangled-logic finder) to identify GLTs. This method consists
of three phases:

• Phase I: linear ordering generation.

• Phase II: initial candidate GTL generation.

• Phase III: GTL refinement and pruning.

Please note that Phase II and Phase III can be integrated with other
linear ordering generation methods [11] as well.

605

36.2

4.1 Phase I: Linear Ordering Generation
The linear order generation initializes the group with a seed cell,

which is randomly generated. Then, it iteratively adds one cell at
a time to the group. The candidates for the cell addition are the
cells outside of the group, but with direct edge connections with
the group. Among these candidates, we choose the one with the
strongest connection with the group. We use a weighted number of
nets to indicate the degree of connection. If a candidate cell vi has
a net e connected to the group and this net has λ(e) pins outside of
the group, its weight is 1

λ(e)+1
. Hence, a net has higher weight if

it has greater portion of its pins inside the group. The connection
between vi and the group is defined by ∑e|vi∈e,e∩C 6= /0

1
λ(e)+1

. We

use min-cut as a secondary criterion for breaking ties.
In this context, we are simply trying to build groups of connected

cells to generate a potential linear ordering. Since the cells are
being added iteratively, the cost function is trying to maximize the
connectivity.

When selecting among the candidate cells, emphasizing the con-
nection ∑e|vi∈e,e∩C 6= /0

1
λ(e)+1

instead of min-cut alone is particularly

important at the beginning of cell agglomeration. If a candidate cell
is outside the GTL, it usually has weak connections with its neigh-
bors. If we use min-cut as the primary criterion, it is quite likely
that this cell is included into the growing group. Likewise, if a can-
didate cell is inside the GTL, it usually has strong connections with
its neighbors and the min-cut criterion may easily exclude this cell.
The order in which the cells are added determines the linear order-
ing. The preference of connection over net-cut leads to building
denser groups with low external connectivity. Thereby, leading to
addition of cells belonging to true GTL first to the growing group.

4.2 Phase II: Initial Candidate GTL Genera­
tion

A cell group can be extracted from a linear ordering according
to the metrics described in Section 3. A group C of size k = |C|
is composed by the first k cells in the linear ordering. Then, the
function nGTL-S(C) or GTL-SD(C) with respect to k is obtained
like in Figure 2 and Figure 3. If there is a clear minimum in this
function, the corresponding cell group is selected as a candidate
GTL “B′′. When computing the nGTL-Score, we need to decide
the value of Rent exponent p. This is obtained by averaging the
Rent exponents for all groups obtained in the linear ordering. The

Rent exponent of a groupC can be estimated by
lnT (C)−lnAC

ln |C|
where

AC is the average number of pins per cell inC.
The procedure described so far is to identify a single GTL in the

netlist. If the initial seed is outside of any existing GTLs, this proce-
dure may fail like the flat curves in Figure 2 and Figure 3. To solve
this problem, multiple searches starting with different seeds can be
performed to generate a population of linear ordering and candi-
date GTLs B = {B1,B2, ...,Bm} for m parallel runs. If the number
of searches is large enough, most of the GTLs can be captured.

4.3 Phase III: GTL Refinement and Pruning
A candidate GTL grown from a random seed might be slightly

inaccurate. For instance, if the seed is at the boundary of an ac-
tual GTL, some cells outside that GTL might be included. In or-
der to solve this problem, we enrich each initial candidate by ad-
ditional candidate solutions. For each candidate Bi obtained in
Phase II, we generate another set of candidates Bi,1,Bi,2, ...,Bi,l

using seeds inside Bi and the same procedure as Phase I and II.
These additional candidates are usually close to but slightly differ-
ent from Bi. Then, union and intersection operations are performed
on {Bi,Bi,1,Bi,2, ...,Bi,l} like in genetic algorithm. Finally, the can-

didate B̂i with the best score of the proposed metrics is selected
as the refined candidate corresponding to the initial candidate of
Bi. This procedure is carried out for all initial candidates in B to
obtain a set of refined candidates {B̂1, B̂2, ..., B̂m}. These refined
candidates are compared with each other. If one has overlap with
another and inferior GTL-Score, it is pruned out. The disjoint can-
didates remained at the end is the final set of GTLs discovered by
our method.

The point to be noted here is that all the three phases mentioned
above can be computed for all m initial seeds in parallel with no
interdependence. The only serial part of algorithm is the final com-
parison between m refined GTLs generated through parallel execu-
tion.

5. EXPERIMENTAL RESULTS
The proposed metrics and methods are tested on various test-

cases: random graphs, ISPD placement benchmarks [12] and a re-
alistic industrial circuit. The experiments are performed on a Linux
server with 8 Intel Xeon processors of 3.2GHz frequency and 8G
memory. The algorithm is implemented in C/C++ and parallelized
using pthread in 8 parallel threads. In the experiments, the size of
each linear ordering is at most 100K cells.

5.1 Experiments on Random Graphs
The random graphs are generated based on [8] and its tangled

logic structures are known a priori. The experimental results on the
random graphs are shown in Table 1. The second column lists the
number of nodes in each graph. The third column describes the syn-
thesized GTLs in the graphs. For example, case 2 has two GTLs:
one with 2000 nodes and the other with 15000 nodes. From the
fifth column, one can see that our method can find all of the GTLs.
In column 6, 7 and 8, the GTL sizes and the values of nGTL-Score
(nGTL-S) and density-aware GTL-Score (GTL-SD) are reported.
Column 9 tells the percentage of nodes which are in the known
GTL but are missed by our method. Our method has zero missing
nodes for 7 of the 10 GTLs. The maximum missing percentage is
only 0.14%. Column 10 indicates the percentage of nodes which
are not in the GTL but are included by our solution. This rate is also
very low and no more than 0.5%. Since our method is to roughly
point out the GTLs which need special treatment, missing a few
cells or including a few more cells has negligible effect.

5.2 Experiments on ISPD Benchmarks
Since for ISPD placement benchmarks we have no knowledge

about the existing GTLs in advance, we verify our metrics and
method by correlating the solution generated with cell placement
results. A placer normally places highly-connected cells close to
each other, therefore the cells in a GTL found by our method are
expected to be crowded in a small local region. Visualizations of
cell placement and our tangled-logic finder solutions is illustrated
in Figure 4. The clots with colors different from the majority of
cells are the GTLs found by our method. Different color indicates
different GTL.

We further compared our metrics with ratio cut [5]. The curves
of these metrics versus groups extracted from a linear ordering are
shown in Figure 5. The top two curves correspond to the nGTL-
Score and the density-aware GTL-Score. The bottom curve is from

ratio cut
T (C)
|C| . The ratio cut curve is much flatter and its global

minimum is at its right end. This demonstrates that ratio cut overly
favors large group size. Both of the top two curves have global
minimum almost at the same place, i.e., they identify the same
GTL. The one having the lowest minimum is from the density-

606

36.2

Table 1: Experimental results on random graphs.
Graph Information Tangled-Logic Finder Solutions

Case |V | Synthesized GTLs #seeds # GTL found GTL sizes nGTL-S GTL-SD Miss Over Runtime(m)
1 10K 500×1 100 1 501 0.1 0.085 0% 0.2% 1
2 100K 2K×1+15K×1 100 2 2010 0.025 0.022 0% 0.5% 33

15003 0.017 0.0156 0.03% 0.05%
3 100K 5K×1 100 1 5008 0.023 0.043 0% 0.16% 31
4 800K 40K×6 100 6 40040 0.0095 0.001 0% 0.1% 141

40092 0.0121 0.0209 0.04% 0.27%
40053 0.0124 0.0214 0.14% 0.28%
40044 0.0143 0.0015 0% 0.11%
40044 0.0143 0.0015 0% 0.11%
40006 0.0191 0.0021 0% 0.02%

Figure 4: GTL found by our method in Bigblue1.

aware GTL-Score and the other one is from the nGTL-Score. The
curve of nGTL-Score confirms our expectation that the value of
nGTL-Score should be mostly around 1.

Figure 5: Functions of nGTL-Score (nGTL-S), density-aware

GTL-Score (GTL-SD) and ratio cut
T (C)
|C| versus groups ex-

tracted from a linear ordering of cells from Bigblue1.

The experimental results on the ISPD benchmarks are summa-
rized in Table 2. It shows the circuit size |V |, number of seeds we
used, number of GTLs founded and detailed information from 3
GTLs of each case. The rightmost column lists the total runtime of
our 3-phase method in minutes. One can see that the GTLs can be

estimated in 2-3 hours for a million nodes design by using both our
method and our metrics. The current run-time obtained is in this
range because we are issuing only 8 parallel threads at one time.
But in industry, for practical application, we can afford to issue over
100 parallel runs in single step which can reduce the runtime dra-
matically by a factor of close to 2-5. Moreover, the quoted run-time
still has a clear advantage on placement and routing that together
takes close to 1 day.

5.3 Experiments on an Industrial Circuit
The proposed metrics and methods are also tested on an indus-

trial circuit. Figure 6 displays the tangled-logic finder solutions
in cell placement. This is an industrial commercial ASIC design
of 65nm technology. From the designers, we know that the blobs
(shown as congestion hotspots in Figure 1) were originally ROM
blocks, and were late dissolved to ordinary logic circuits to meet
the timing closure. Therefore, these GTLs should have dense logic
connections according to the designers. Figure 6 indicates that our
method successfully finds these logic structures. In fact, the GTLs
captured by our method in Figure 6 match almost exactly with the
routing hotspots in upper part of Figure 1, which is from the same
design. The characteristics of the solutions are summarized in Ta-
ble 3. The first column lists the size of each GTL according to the
circuit designers. The second column includes the size of the GTL
found by our method.

To show the usage of GTLs, all the cells inside the GTLs found
through tangled-logic finder algorithm are inflated by four times,
and placement was re-performed to spread these cells. Figure 7
shows the routing pictures for this new netlist. Note that since cells
are inflated, so the new placement looks different than Figure 1 and
Figure 6. It was observed that compared to original placement, the
number of nets passing through 100% routing congested tiles are
reduced from over 179K to 36K (5X reduction), and the number of
nets passing through 90% congested tiles are reduced from 217K
to 113K (2X reduction). The average congestion metric 1 is re-
duced from 136% to 91%. It is clear that better congestion can be
achieved if placement employs cell inflation with GTLs identified
with our technique.

Table 3: GTLs found on the industrial circuit.
Size of GTL in design Size of GTL found Cut GTL-Score

31880 31835 36 0.025
31914 31869 36 0.025
31754 31803 36 0.026
32002 32048 36 0.026
10932 10952 28 0.028

1measured by taking the worst 20% congested nets and averaging
the congestion number of all routing tiles these nets pass through

607

36.2

Table 2: Experimental results on ISPD 05/06 placement benchmarks.
Case |V | #seeds # GTL found Top 3 GTLs GTL size Cut GTL-S GTL-SD Runtime(m)

Bigblue1 278164 100 72 Structure 1 6187 369 0.14 0.031 81
Structure 2 1548 307 0.32 0.083
Structure 3 3539 800 0.46 0.14

Bigblue2 557786 100 93 Structure 1 13888 397 0.107 0.045 104
Structure 2 9602 560 0.196 0.111
Structure 3 10776 1091 0.352 0.195

Bigblue3 1096812 100 112 Structure 1 695 81 0.204 0.225 159
Structure 2 297 76 0.354 0.202
Structure 3 13005 2289 0.686 0.454

Adaptec1 211447 100 78 Structure 1 2628 124 0.128 0.083 77
Structure 2 2616 136 0.141 0.093
Structure 3 375 36 0.142 0.212

Adaptec2 255023 100 54 Structure 1 751 52 0.132 0.315 114
Structure 2 3387 263 0.236 0.058
Structure 3 618 123 0.358 0.435

Adaptec3 451650 100 109 Structure 1 896 31 0.065 0.058 142
Structure 2 420 25 0.089 0.17
Structure 3 960 67 0.134 0.126

Figure 6: GTL of the industrial circuit.

Figure 7: Routing congestion after cell inflation using GTLs

information.

6. CONCLUSIONS
This paper introduces a new problem of finding tangled logic

structures from synthesized netlists. These structures can help with
floorplanning and routablility if special handling is given to cells
in these structures. Our new metrics are the first ones to enable
the comparison of clusters of different sizes and are normalized so
that one can develop standards for tangled logic across a variety of
netlists. We demonstrate a possible algorithm for discovering these
structures and show how simply inflating the corresponding cells
leads to much better routability after placement.

Future work seeks to expand the metrics to handle more special-
ized structures driven by select lines, and to figure out new ways to
use groups of tangled logic to drive better physical design solutions.

7. REFERENCES
[1] T. Chen, T. Hsu, Z. Jiang, Y. Chang. NTUplace: a ratio partitioning based

placement algorithm for large-scale mixed-size designs. In Proceedings of the

International Symposium on Physical Degisn, pages 236–238, 2005.

[2] T. Chan, J. Cong, J. Shinnerl, K. Sze, M. Xie. mPL6: enhanced multilevel
mixed-size placement. In Proceedings of the 2006 International Symposium on

Physical Design, pages 212–214, 2006.

[3] C. J. Alpert, A. B. Kahng, G.-J. Nam, S. Reda, and P. Villarrubia. A
semi-persistent clustering technique for VLSI circuit placement. In Proceedings

of the ACM International Symposium on Physical Design, pages 200–207, 2005.

[4] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: a survey.
Integration: the VLSI Journal, 19(1-2):1–81, 1995.

[5] P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral K-way ratio-cut
partitioning and clustering. In Proceedings of the ACM/IEEE Design

Automation Conference, pages 749–754, 1993.

[6] T.-K. Ng, J. Oldfield, and V. Pitchumani. Improvements of a mincut partition
algorithm. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 470–473, 1987.

[7] Lars Hagen, Andrew B. Kahng A New Approach to Effective Circuit Clustering
In Proceedings of the IEEE International Conference on Computer-Aided

Design, pages 422–427, 1992.

[8] J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI circuits. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 520–523, 1990.

[9] J. Cong and S. K. Lim. Edge separability-based circuit clustering with
application to multilevel circuit partitioning. IEEE Transactions on

Computer-Aided Design, 23(3):346–357, March 2004.

[10] P. Kudva, A. Sullivan, and W. Dougherty. Metrics for structural logic synthesis.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 551–556, 2002.

[11] C. J. Alpert and A. B. Kahng. A general framework for vertex orderings with
applications to circuit clustering. IEEE Transactions on VLSI Systems,
4(2):240–246, June 1996.

[12] G.-J. Nam, C. J. Alpert, and P. G. Villarrubia. ISPD 2005/2006 Placement

Benchmarks, pages 3–12. Springer, 2007.

608

36.2

