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Abstract

In this paper, we investigate the impact of interconnect and de-
vice process variations on voltage fluctuations in power grids. We
consider random variations in the power grid’s electrical parame-
ters as spatial stochastic processes and propose a new and efficient
method to compute the stochastic voltage response of the power
grid. Our approach provides an explicit analytical representation
of the stochastic voltage response using orthogonal polynomials in
a Hilbert space. The approach has been implemented in a proto-
type software called OPERA (Orthogonal Polynomial Expansions
for Response Analysis). Use of OPERA on industrial power grids
demonstrated speed-ups of up to two orders of magnitude. The re-
sults also show a significant variation of about ± 35% in the nom-
inal voltage drops at various nodes of the power grids and demon-
strate the need for variation-aware power grid analysis.

1. Introduction
One of the most difficult and important challenges posed by deep

sub 100 nm IC technology is the increasing uncertainty in the per-
formance of CMOS circuits due to variations in the fabrication pro-
cess [20, 21]. Examples of the parametric variations include vari-
ations in doping profiles, materials, interconnect width (W ) and
thickness (T ), device characteristics like the effective channel length
(Le f f ) etc. Physical parameters like W , T of the interconnects and
Le f f of the MOS devices vary significantly [21] with strong intra-
die (across die) and inter-die (across wafer) components. These
physical variations lead to substantial variations in the electrical pa-
rameters viz., conductance, capacitance, inductance, threshold volt-
ages, leakage currents etc., of the CMOS devices and interconnects.

An important aspect of the IC design process is the integrity of
the power grid. The exponential increases in transistor density has
resulted in huge power distribution networks carrying large transient
currents, that result in significant voltage drops (IR and L di

dt ) in the
voltage levels at the power grid nodes. This combined with contin-
uous reduction in supply voltages (≤ 1.2V for the 90 nm process)
make the voltage drops critical as they can severely impact the func-
tionality and the performance of the ICs. Process variations in the
power grid conductors and onchip CMOS devices of the functional
blocks can have a significant detrimental impact on the voltage lev-
els at the power grid nodes. Given the critical dependence of the sub
100nm ICs on the VDD voltage variations, its important to charac-
terize the effects of process variations on the voltage levels at the
power grid nodes.

An established body of literature is available on the analysis and
optimization aspects of power grids [1–5, 7, 9–13]. Some of the
early work on power grid analysis used DC analysis to obtain the
IR drops [1–3]. The variations in current profiles of the functional
blocks are often obtained by simulation [1, 7, 9, 10]. The authors
of [4] describe a multi-grid approach where coarser meshes are first
solved using fast PDE solvers and the results are extrapolated to
solve the original mesh. An efficient hierarchical power grid analy-

sis technique employing sparsification based on integer linear pro-
gramming is described in [5] and [6] presents a linear time algo-
rithm based on random walks that is efficient for incremental local-
ized analysis. The analysis of power grids has only been recently
expanded to account for process variations. Assuming normal and
lognormal distributions for the device threshold voltages and leak-
age currents, the authors of [12, 13], present a procedure to com-
pute the mean and bounds on the variance of the voltage drops on
a power grid. In [11], the voltage response of a power grid is ex-
pressed as a convolution of the grid impulse response and load cur-
rents. Their approach to account for variability is to view the load
currents of the functional blocks (inputs to the power grid system)
as random variables due to the large space of input patterns. Based
on this, they compute the mean and variance of the voltage response
of the grid.

2. Our Contributions
In this paper, we propose a new approach [18] to account for

the impact of process variations in the analysis of power grids. Un-
til recently, stochastic analysis of systems generally meant that the
system inputs were stochastic but the system itself was determinis-
tic with deterministic parameters. The approach to be described here
addresses the important case when the system parameters are also
stochastic quantities. For such a case, the physical system itself is
an outcome of a stochastic process. Our analysis, thus is completely
different from all the previous power grid analyses. In this work, due
to the manufacturing variations in the interconnect width W , thick-
ness T and the device channel length Le f f , the electrical parame-
ters in the power grid (R,L,C) are modeled as continuous parameter
(spatial) stochastic processes. The key development here is an ex-
pansion for the stochastic voltage response as an infinite series of
orthogonal polynomials of random variables in an infinite dimen-
sional Hilbert space. The expansion can be optimally truncated to
any order depending on the available computational resources and
accuracy requirements. With an explicit analytical representation of
the voltage response available in terms of the random variables, mo-
ments and probability density functions of voltage can be directly
computed. This provides an attractive alternative to the computa-
tionally expensive Monte Carlo simulations. Our approach has been
implemented in a prototype software called OPERA.

In Section 2, we discuss the core contributions of our work. Sec-
tion 3 contains the problem definition. In Section 4, we discuss the
theoretical foundations of our approach. In Section 5, we demon-
strate our method through an example followed by the discussion of
a special case. We also provide a brief discussion on the implemen-
tation issues. The experimental results are shown in Section 6 and
conclusions are presented in Section 7.

3. Problem Statement
We consider an RC model of the power grid with a mesh struc-

ture in which the metal interconnects and the vias are modeled as
passive RC networks. Power sources provide connections from the
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external supply to the grid and are modeled as ideal voltage sources
between the grid nodes and the ground. The functional blocks (logic
gates/latches) that are distributed across the chip act as power drains.
They are modeled as known transient current sources between the
grid nodes and the ground, in parallel with the non-switching capac-
itances of the functional blocks. The transient current source profiles
are obtained from simulation of the functional blocks at a full sup-
ply voltage for a large sequence of random input vectors. The pack-
age pin contacts that provide the power supply connection are mod-
eled as resistances in series with the supply sources.

The power grid model can be described in the Laplace domain
by the MNA equation

(G + sC) x(s) = U(s) (1)

where (G+ sC) is the coefficient matrix and x(s) is the response to
be determined. U(s) = (i(s),G1 VDD)T is the known excitation; vec-
tor i(s) represents the functional block drain currents; G1 is a diag-
onal matrix that consists of non-zero elements at those nodes where
VDD sources are connected. Almost all the conductance of the power
grid comes from the metal interconnects while they contribute only
about 5% of the grid capacitance [8]. The majority of the capaci-
tance contribution of the power grid comes from the non-switching
load capacitances of the gates in the functional blocks. The load
capacitance of the gates in turn comes from two major sources -
the gate (CGS and CGD) capacitance of the gates they drive and the
source/drain diffusion capacitances (CDB and CSB); the two sources
contribute almost equally to the grid capacitance in the present tech-
nologies [8, 15]. The drain currents i(s) consist of MOS drain cur-
rents and the gate oxide and subthreshold leakage currents.

The circuit parameters G and C depend on the grid intercon-
nect and device parameters such as the metal thickness (T ), metal
width (W ), channel length (Le f f ) etc.. In addition, the MOS drain
currents i(s) in the excitation U(s) vary significantly with changes
in Le f f . In the presence of random process variations, these physi-
cal characteristics of the interconnects and devices, and hence their
electrical characteristics are modeled as spatial stochastic processes
(they vary randomly and spatially across a die for intra-die varia-
tions and across a wafer for inter-die variations).

In the present work, we assume that the conductance G of the
grid varies with parameters W and T . We ignore variations in C
due to W and T . We assume that the gate capacitance contributes
about 40% of the total grid capacitance and that this gate ca-
pacitance varies with Le f f . We have from SPICE models Cgate ∝
We f f Le f f Cox where We f f ,Cox represent the effective width and gate
oxide capacitance of a MOS transistor. The drain currents i(s) that
consist of MOS drain currents and leakage currents are known to
vary significantly with Le f f . We consider only the inter-die varia-
tions in this work and hence the variations in G and C are fixed for
any one single die. Thus, they are modeled as random variables and
not as spatial random processes.

Consider the manufacturing process. Every trial of the manu-
facturing process (trial denotes the fabrication of a die or a wafer)
results in a different value for W , T and Le f f of the intercon-
nects and devices. These parameters are thus functions that map
one point in the manufacturing sample space to some real value.
Thus, W , T and Le f f are random variables over the manufactur-
ing sample space. In general, let Ω denote the manufacturing sam-
ple space. For ω ∈ Ω, ξi : ω → R denotes a random variable. Let
ξξξ(ω) = (ξ1(ω), . . . ,ξn(ω)) denote a vector of n such random vari-

ables. Let Θ : Ω → R denote the vector space of all random vari-
ables ξi. In the presence of process variations the MNA equations
for the interconnect can be expressed as:

( G(ξξξ(ω)) + s C(ξξξ(ω)) ) x(s,ξξξ(ω)) = U(s,ξξξ(ω)) (2)

Equation (2) is known as a stochastic differential equation as
the operator (G(ξξξ(ω)) + sC(ξξξ(ω))) is a stochastic process depen-
dent on a random variable ξξξ and the deterministic Laplace parame-
ter s. Further, the excitation vector U(s,ξξξ(ω)) has both determinis-
tic and random components. For each manufacturing outcome ω and
for each corresponding value of the parameter ξ(ω), x(s,ξξξ(ω)) de-
notes the fixed response of the system for that particular manufactur-
ing outcome. In the next section, we discuss the theoretical founda-
tions of our proposed approach to compute the response x(s,ξξξ(ω)).

4. Proposed Approach
The approach presented here is based on representing the

stochastic voltage response x(s,ξξξ(ω)) of the power grid as an in-
finite series of orthogonal polynomials in an infinite dimen-
sional Hilbert space of random variables. We assume that x(s,ξξξ(ω))
is a second order process, i.e. all the random variables have fi-
nite variances. Without loss of generality, we also assume that the
variables ξξξ(ω) are random variables with zero mean and unit vari-
ance. Given a random variable W with mean Wµ and stan-
dard deviation Wσ, W can always be expressed in a normalized
form as W = Wµ + Wσ ξW , where ξW is a random vari-
able with zero mean and unit variance.

For simplicity, henceforth we will write ξξξ(ω) as ξξξ. To explain
our approach, we state a few well known facts from the theory of
orthonormal expansions [24].

• Let V be an inner product space, with the inner product de-
noted by 〈·, ·〉. For non-zero x,y ∈V , x and y are orthogonal if
〈x,y〉 = 0. They are orthonormal if ‖x‖ = ‖y‖ = 1.

• An complete inner product space H (i.e. one in which every
Cauchy sequence converges) is called a Hilbert space.

• An infinite family of orthonormal vectors, {φ}∞
k=1, in a Hilbert

space is called an orthonormal basis if it is a maximal set of
mutually orthonormal vectors.

• If {φ}∞
k=1 is a orthonormal basis of a Hilbert space H, then the

infinite series ∑∞
k=1 〈x,φk〉φk converges in norm to x.

We now return to the problem of representing the stochastic
voltage response x(s,ξξξ). From Section 3, we know that the space
Θ : {Ω → R} denotes the infinite dimensional vector space of map-
pings, each mapping representing a random variable ξξξ(ω). Let P be
the probability measure on the sample space Ω i.e., the random vari-
ables ξξξ have the probability density function P. This space of map-
pings forms a Hilbert space HΘ, where the inner product of any two
mappings is the expected value of their product under P. That is,

< ξξξm,ξξξn >= E(ξξξm,ξξξn) =
Z

Ω
ξξξm ξξξn dP (3)

The stochastic voltage response x(s,ξξξ) is an element of Θ. There-
fore, if we can find a orthonormal basis {γ1(ξξξ),γ2(ξξξ), . . .} for HΘ,
then x(s,ξξξ) can be represented by

x(s,ξξξ) =
∞

∑
n=0

an(s) γn(ξξξ) (4)
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Equation (4) is a general representation of the stochastic volt-
age response process x(s,ξξξ) in terms of the orthonormal basis func-
tions of random variables ξξξ. The primary task now is to identify
the orthonormal basis {γ1(ξξξ),γ2(ξξξ), . . .} in ξξξ. One such orthonor-
mal basis is the set of Hermite polynomials of all orders. This ba-
sis is valid for any second order process. However, other types of
polynomials can also serve as orthonormal bases. The orthogonal-
ity is defined w.r.t the norm in Equation (3) which is dependent on
the probability density function P of ξξξ. So, for different probabil-
ity distributions of the random variables, different orthonormal ba-
sis sets need to be identified. The well established Askey scheme of
polynomials [19] helps us identify the orthogonal polynomials for
different probability density functions. For example, if the under-
lying random variables are Gaussian or lognormal, then the best
choice (in terms of speed of convergence) would be Hermite polyno-
mials. Similarly, for Gamma, Beta and Uniform random variables,
the best choices would be Laguerre, Jacobi and Legendre polyno-
mials respectively.

For the sake of demonstrating our approach, we consider a power
grid subjected to inter-die Gaussian variations in interconnect width
(W ), thickness (T ) and device channel length (Le f f ). The method-
ology described here can be easily extended to consider other prob-
ability distributions and any number of variables.

4.1. Gaussian Random Variables

Let ξξξ = {ξ1,ξ2,ξ3, . . . ,ξn} ∈Θ be zero mean orthonormal Gaus-
sian random variables. Hermite polynomials of all orders in ξξξ form
an orthonormal basis for HΘ. They are defined by

Hp({α1,α2, · · · ,αp}) = (−1)pe
1
2 ξξξt ξξξ ∂p

∂α1∂α2 · · ·∂αp
e−

1
2 ξξξt ξξξ, (5)

where {αi} are any set of p variables chosen from the set
{ξ1,ξ2, · · · ,ξn} with repetitions. Since p variables can be chosen
from a set of n variables in M = (p + n− 1)!/p!(n− 1)! ways, the
number of Hermite polynomials of degree p is given by M. As an
example, Hermite polynomials in {ξ1,ξ2} of order 0, 1, 2 can be
found as follows.

order 0: H0({}) = 1,

order 1: H1(ξ1) = ξ1, H1(ξ2) = ξ2,

order 2: H2(ξ1,ξ1) = ξ2
1 −1, H2(ξ1,ξ2) = ξ1ξ2,

H2(ξ2,ξ2) = ξ2
2 −1

(6)

Let {ξ1,ξ2,ξ3, . . .} denote an infinite set of zero mean orthonor-
mal Gaussian random variables. Then the stochastic response can
be represented as a convergent infinite series expansion of Hermite
polynomials as [18]

x(s,ξξξ) = b0(s)H0 +
∞

∑
i1=1

bi1(s)H1(ξi1)

+
∞

∑
i1=1

i1

∑
i2=1

bi1i2(s)H2(ξi1 ,ξi2) (7)

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

bi1i2i3(s)H3(ξi1 ,ξi2 ,ξi3)

...

Note: A closer look at Equations (6), (7),(4) shows that Equation (4)
is simply a rearrangement of the terms in Equation (7). The remain-
ing task then is to determine the coefficients {ai} of the expansion
given in Equation (4).

The expansion shown in Equation (7) called the Homogeneous
Chaos was developed by Weiner [23]. The celebrated result of
Cameron and Martin [17] extended the expansions to general func-
tion spaces, and is now referred to as Polynomial Chaos. Ghanem
and Spanos [18] developed applications of these results to the study
of systems with stochastic parameters.

4.2. Evaluation of the Coefficients

Though the number of random variables ξξξ are finite, the order p
and hence the number of terms N +1 in the stochastic response ex-
pansion are infinite. For practical computation purposes, the infinite
series needs to be projected onto a finite space, i.e. truncated. The
general approach is to limit the response expansion to a finite or-
der p, which in turn determines the accuracy. Often, a second or-
der (p = 2) or third order (p = 3) expansion is sufficient. If there
are n random variables, the response expansion obtained by limit-
ing the order to p would be

x(s,ξξξ) =
N

∑
i=0

ai(s) γi(ξξξ) (8)

where N = ∑p
k=0

(
n−1+ k

k

)
.

The error due to truncation is given by

∆p(s,ξξξ) = (G(ξξξ)+ s C(ξξξ)) x(s,ξξξ)−U(s,ξξξ) (9)

Once we have the truncated expansion from Equation (8), we
need to evaluate the best deterministic coefficients {ai} that result
in the best minimization of the truncation error. We follow the prin-
ciple of orthogonality which states that the best approximation of
the response x(s,ξξξ) is one in which the truncation error ∆p(s,ξξξ) is
orthogonal to the approximation. The application of the principle of
orthogonality to obtain a finite projection is known as the Galerkin
method. The orthogonality is defined w.r.t to some norm, which in
this case is given by < ∆p(s,ξξξ),γi(ξξξ) >. Thus, to obtain the deter-
ministic coefficients we need to solve the system of equations given
by

< ∆p(s,ξξξ),γi(ξξξ) >= 0, i = 0,1,2, · · ·N (10)

5. Illustration
As an example to illustrate the methods, we consider a power

grid subjected to random process variations where ξW , ξT , ξL de-
note the normalized variations in width, thickness and the effective
device channel length respectively. Then

ξW =
∆W
W

, ξT =
∆T
T

, ξL =
∆Le f f

Le f f
(11)

Without loss of generality, we assume that they are uncorrelated
Gaussian random variables. Certainly if they were not, given their
covariance matrix, they can always be transformed into a set of un-
correlated random variables by an orthogonal transformation tech-
nique like principal component analysis [16]. As discussed earlier,
the G matrix depends on ξW and ξT and the C matrix depends on
ξL. We use a linear model to capture the dependence of G and C
on these random variables in accordance with the models in con-
temporary literature [20]. But there are no limitations on the spe-
cific model to be chosen. The MNA equation for the grid system is
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given by:
(G(ξξξ)+ sC(ξξξ)) x(s,ξξξ) = U(s,ξξξ) (12)

where ξξξ = (ξW , ξT , ξL) is the random variable vector and the per-
turbed matrices G and C and U(s) are given by

G(ξξξ) = Ga(s)+Gb(s)ξW +Gc(s)ξT

C(ξξξ) = Ca(s)+Cc(s)ξL (13)
U(s,ξξξ) = Ua(s)+Ub(s)ξW +Ud(s)ξT +Uc(s)ξL

Ga,Ca,Ua are the mean matrices and Gb, Gc, Cc, Ub, Uc, Ud repre-
sent the perturbation matrices of G, C, U(s) w.r.t W , T , Le f f .

Consider Equation (13) and the physical definition for conduc-
tance per unit length G = W T

ρ . We can observe that for the linear
model in Equation (13), Gb and Gc are same as Ga scaled by some
constants. So, we have Gb = d Ga and Gc = eGa where e and d
are some constants. Since the scaled sum of two independent Gaus-
sian variables ξW and ξT (d ξW + eξT ) is a Gaussian variable with
calcuable mean and variance, matrix G and hence U(s,ξξξ) can be
re-represented using a single normalized variable ξG as

G(ξξξ) = Ga(s)+Gg(s)ξG,

U(ξξξ) = Ua(s)+Ug(s)ξG +Uc(s)ξL (14)
C(ξξξ) = Ca(s)+Cc(s)ξL

ξξξ is now given by ξξξ = (ξG, ξL)T . Using Hermite polynomials as
the basis, we can expand the response x(s,ξξξ) using a second order
expansion (p = 2) from Equation (7) as

x(s,ξξξ) = a0(s)+a1(s)ξG +a2(s)ξL +a3(s)(ξG
2 −1)

+ a4(s)(ξGξL)+a5(s)(ξL
2 −1). (15)

where ai(s) is a vector. The coefficient vectors {ai} need to be de-
termined.

Following the orthogonal truncation method from Section 4.2,
we can define the error as in (9).

∆p(s,ξξξ) = (G(ξξξ)+ sC(ξξξ)) x(s,ξξξ)−U(s,ξξξ) (16)

Coefficient vectors {ai(s)} are obtained by solving (see Equa-
tion (10)) 〈

∆p(s,ξξξ),γ j(ξξξ)
〉

= 0 for j = 0,1,2, . . . ,N (17)

The inner product
〈
Σp(s,ξξξ),γ j

〉
is defined as〈

∆p(s,ξξξ),γ j(ξξξ)
〉

=
Z +∞

−∞

Z +∞

−∞
∆p(s,ξξξ)γ j(ξξξ)W (ξξξ) dξG dξL = 0, (18)

where W (ξξξ) is the bivariate Gaussian probability density function.
Thus for each j = 0,1,2, · · · ,N, Equation (17) results in a lin-

ear system of (N +1) equations to solve for the deterministic coef-
ficients vectors {ai} represented by the vector a(s).

(G̃+ sC̃) a(s) = Ũ(s), (19)

where

G̃ =




Ga Gg 0 0 0 0
Gg Ga 0 2Gg 0 0
0 0 Ga 0 Gg 0
0 2Gg 0 2Ga 0 0
0 0 Gg 0 Ga 0
0 0 0 0 0 2Ga




(20)

C̃ =




Ca 0 Cc 0 0 0
0 Ca 0 2Cb Cc 0

Cc 0 Ca 0 0 2Cc

0 0 0 2Ca 0 0
0 Cc 0 0 Ca 0
0 0 2Cc 0 0 2Ca




(21)

Matrix Ũ(s) is given by

Ũ(s) = (Ua(s), Ug(s), Uc(s), 0, 0, 0)T (22)

Now, we can solve Equation (19) numerically to obtain the coef-
ficient vector a(s). Once the vector a(s) is obtained, we have an ex-
plicit expression for the circuit response x(s,ξξξ) in terms of ξξξ given
by Equation (15). With this explicit expression, we can obtain the
moments of the stochastic voltage response at any node of the power
grid as follows:

Mean(x(t,ξξξ)) = a0(t)
Var(x(t,ξξξ)) = (a1(t))

2 Var(ξG)+(a2(t))
2 Var(ξL)

+ (a3(t))
2 Var(ξG

2 −1)+(a4(t))
2 Var(ξG)Var(ξL)

+ (a5(t))
2 Var(ξL

2 −1) (23)
Var(x(t,ξξξ)) = (a1(t))

2 +(a2(t))
2 +(a3(t))

2 2+(a4(t))
2

+ (a5(t))
2 2

To obtain higher order moments for x(t,ξξξ), we can use the equal-
ity E(xn(t,ξξξ)) =< xn−1(t,ξξξ), x(t,ξξξ) >, provided that x(t,ξξξ) has an
accurate representation using an expansion of sufficiently large or-
der p. Once the higher order moments are obtained, expansions like
Gram-Charlier series or Edgeworth series could be used to obtain
the probability density function of x(t,ξξξ) directly.

5.1. Special Case

As a special case, let’s consider only the variations in the drain
currents U(s), i.e. the R.H.S of the MNA analysis Equation (1) say
due to threshold variations. U(s) consists of MOS drain currents and
leakage currents; the latter are known to vary exponentially with the
threshold voltages. Our problem then becomes similar to the one ad-
dressed by Ferzli and Najm [12, 13]. We then have,

(G + sC)x(s,ξξξ) = U(s,ξξξ) (24)

where ξξξ represents the threshold variations. If a normal distribu-
tion for Vth is assumed, then the distribution for the leakage currents
becomes lognormal. To consider intra-die variations in Vth, let’s di-
vide the chip in to a finite number of regions say 2 for this exam-
ple. Let’s assume that ξξξ = (ξ1,ξ2) are the normalized uncorrelated
Gaussian random variables that represent Vth variations for the two
chip regions. Then, the currents U(s,ξξξ) can always be expressed us-
ing an orthogonal Hermite polynomial basis [25] in ξ1,ξ2 to any
required order (p) of accuracy, say p = 2 for this case. Since, the
R.H.S of Equation (24) is stochastic, the response of the grid be-
comes stochastic as well and can be represented using the Hermite
basis. We thus have,

x(s,ξξξ) = x0(s)+ x1(s)ξ1 + x2(s)ξ2 + x3(s)(ξ1
2 −1)

+ x4(s)(ξ1ξ2)+ x5(s)(ξ2
2 −1) (25)

U(s,ξξξ) = U0(s)+U1(s)ξ1 +U2(s)ξ2 +U3(s)(ξ1
2 −1)

+ U4(s)(ξ1ξ2)+U5(s)(ξ2
2 −1) (26)
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Following the error minimization procedure illustrated in Section 5,
our analysis simply translates to solving independent equations of
the form for n = 0,1, . . . ,5

(G + sC) xn(s) = Un(s) (27)

All we need is a single LU factorization of the original matrix
(G + sC) and then repeated solves for different values of the R.H.S.
Using the formulae from Equation (23), we can directly compute
the mean, variance and other higher order moments unlike [12, 13]
which can calculate only some bounds for the variance.

5.2. Implementation Issues

The procedure for obtaining the voltage response has been im-
plemented in a prototype software called OPERA. One of the pri-
mary issues involved is the computational complexity of our ap-
proach. Solving the system of Equations (19) is computationally the
most intensive step in our approach. The complexity of that step is
dependent on the length of the vector a(s) which varies as O(rp),
where p is the order of the expansion and r is the number of ran-
dom variables. We found an order 2/order 3 expansion to be suffi-
ciently accurate for variational power grid analysis considering re-
alistic bounds for maximum variability in the grid interconnect and
device parameters. Also, the matrices G̃ and C̃ are very sparse and
they have been observed to become increasingly sparser with an in-
crease in the order of the expansion (p) or the number of random
variables (r).

Further, computational complexity of OPERA can be signifi-
cantly reduced by efficient techniques like model order reduction
(MOR) [14], multi grid analysis [4] and iterative block solvers with
appropriate pre-conditioners [18]. MOR techniques can be used as
the power grid node voltages in the top layers and their moments
w.r.t ξξξ are typically of no interest to the designer. Model order re-
lated stability issues have been addressed in a number of litera-
tures and any existing stability technique can be incorporated in our
method.

6. Experimental Results
OPERA has been verified for many industrial power grids con-

sidering order 2/order 3 expansions for representing the stochastic
voltage response. Results for a few grids are presented here. As dis-
cussed earlier, we assume a Gaussian distribution for the variables
W , T and Le f f for all the grids. We consider a linear or a first order
model for the variations in G, C and the drain currents i(s). Leak-
age currents are known to vary exponentially with Le f f which may
suggest a higher order expansion for U(s) in Le f f . But for the pur-
poses of this paper, we consider a linear expansion itself as they
constitute only 5% of the total currents in the current CMOS tech-
nologies [22].

Table 1 shows the results for the transient analysis of 7 indus-
trial grids for maximum 3σ variations of 20% in ξW , 15% in ξT
(hence 25% in ξG) and 20% in ξL. Note that we are considering
the inter-die variations and that only 40% of the capacitance varies
with Le f f as discussed earlier. A fixed time step was used in car-
rying out the transient analysis and an order 2 expansion was used
for representing the stochastic response. Comparison of results from
OPERA with Monte Carlo simulations (1000 samples for each case)
has been done for all the grids and the results are reported in Table
1. The average and the maximum errors in obtaining the mean (µ)
and variance (σ) of the voltage response from OPERA compared

to Monte Carlo simulations are shown in the table. The errors re-
ported in Table 1 are for data obtained from simulation across all
nodes and all time points of the transient simulation of the grid. We
can see from the table that OPERA demonstrates good accuracy in
determining the mean and variance of the voltage response. The ac-
curacy in obtaining the variance by OPERA can be increased fur-
ther by increasing the order of the expansion.

The drain current profiles used for the transient analysis of the
power grid were such that the peak drop in the voltage at any grid
node was less than 10 % of the VDD. Under such conditions, it was
observed that for all grids the mean voltage drops at the grid nodes
(µ) with variations was more or less the same as the nominal volt-
age drops (µ0) with out variations. And the difference between the
two drops (µ− µ0) was negligible when expressed as a fraction of
% of VDD. However on average for each grid, the ±3σ variation in
the voltage drops at the grid nodes, was about ± 35 % of µ0, where
µ0 are the nominal voltage drops with out variations. This strongly
supports the necessity of considering the effects of process varia-
tions on power grids.

For the power grid with 19,181 nodes, we plotted the distribu-
tion of the voltage response from OPERA and Monte Carlo simula-
tions w.r.t to the variations in ξW , ξT and ξL at arbitrarily selected
nodes in the power grid. Figures 1, 2 show the voltage distribution
at a select node from Monte Carlo simulations and OPERA.
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Figure 1. Voltage distribution from OPERA and MC

7. Conclusions
We presented a general framework to accurately compute the

stochastic response of power grids in the presence of process vari-
ations. Using orthogonal polynomial expansions in a Hilbert space,
we provide an explicit analytical representation of the stochastic
response. The coefficients of the analytical expansion are deter-
mined precisely by utilising the orthogonality property of the poly-
nomials of the expansion. Further, the expansion facilitates the di-
rect and precise computation of the moments of the power grid re-
sponse. We also show that our analysis becomes very simplified
if we consider just the impact of leakage current variations on the
power grid. We implemented the algorithm in a prototype software
called OPERA and verified it extensively for many industrial grids.
OPERA demonstrates very good accuracy when compared with the
classical Monte Carlo simulations along with providing significant
speed-ups up to two orders of magnitude.
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Size Ave. % Error Max. % Error Ave. % Error Max. % Error ±3σ variation CPU time CPU time Speedup
(# nodes) in µ in µ in σ in σ (% of nominal Monte (sec) OPERA (sec)

drop µ0)
19181 0.0155 0.0282 2.53 2.78 ± 34 1444.00 14.32 101
25813 0.0422 0.0838 3.41 3.84 ± 33 1565.30 77.93 20
34938 0.0204 0.5146 1.53 12.17 ± 32 1140.10 17.50 65
49262 0.1992 0.3713 6.73 7.37 ± 37 4777.87 178.52 27
62812 0.0680 0.1253 3.82 6.45 ± 46 1481.7 17.40 85
91729 0.0137 0.6037 3.28 18.03 ± 30 3172.67 25.50 124

351838 0.0926 0.1457 5.27 18.39 ± 33 109315 1050.72 104

Table 1. Results for grids from OPERA and Monte Carlo simulations for order 2 expansion
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Figure 2. Voltage distribution from OPERA and MC
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