
Cycle Simulation Techniques
Samir Palnitkar

Sun Microsystems, Inc. Mountain View CA
samirp@eng.sun.com

Darrell Parham
Sun Microsystems, Inc. Mountain View CA

drp@eng.sun.com

Abstract
Nowadays, most hardware design is being done at a high
level of abstraction, such as a hardware description
language. Hence, simulation constitutes a signijicant part
of the design verification process. In this paper, we study
cycle simulation techniques that could potentially speed
up simulation. Then we propose various metrics to predict
the performance of a cycle based simulator which uses
these cycle simulation techniques. A justijication is
provided as to why each metric is the best possible
indicator of a certain characteristic of the design. Finally
we summarize the results obtained from the analysis of
various designs and draw inferences from them.

1.0 Introduction

With more and more hardware design being done
using hardware description languages, simulation has
become a very important part of the entire design cycle.
Time spent in simulation constitutes a high percentage of
the time required for each design iteration. Faster
simulation speeds mean a notable decrease in the cycle
time for each simulation run of the design and hence
quicker turnaround times for the functional verification of
the design. Efforts are king made by many simulator
developers to push simulation speeds as high as possible.
Various innovative techniques and algorithms have been
utilized to build faster simulators.

In this paper we study two cycle based simulation
techniques which we believe will result in simulation
speedup. To study the effect of these techniques on a
simulator, we have developed various metrics which will
allow us to weigh the various trade-offs in implementing
these techniques and to draw reasonable conclusions about

the potential speedup that can be obtained using the
discussed cycle based simulation techniques. A
justikation is provided as to why each measured quantity
is the best possible indicator of a certain characteristic of
the design.

In section 2 we study the two cycle based
simulation techniques and list the underlying assumptions
to apply these techniques to simulation. In section 3 we
propose the various metrics, explain what they measure
and justify why they were chosen. In section 4 we present
the results obtained from the analysis of designs and draw
inferences from these results. Finally in section 5 we state
the conclusions of our study.

2.0 Cycle based simulation techniques

In this section we study two techniques that we
believe will potentially speed up simulation. The first
technique applies to an event driven simulation algorithm
and the second tecxique applies to an oblivious
simulation.

2.1 Event ordering and delayed evaluation
This technique suggests that all scheduled

evaluations will take place only at the active edge of clock.
Any event that is scheduled within a clock cycle will only
be evaluated at the next active edge of clock. T i i g
information within a cycle is not available using this
technique. This technique assumes implicitly that
simulation is not beiig done to verify timing and that
timing verification will be done seperately by a static
timing analyzer.

2
0-81 86-7082-719s $04.00 0 1995 IEEE

mailto:samirp@eng.sun.com
mailto:drp@eng.sun.com

FIGURE 1. Set of events in a clock cycle

1 clock cycle +

evaluation event #event event
edge A el e2 e3

To understand this concept, let us take a look at a
hypothetical set of events within. a certaji clock cycle.

In FIGURE 1. above we have shown the clock
for a simple synchronous design which is clocked at its
positive edge. Thus the positive edge of clock is the
active edge in the design. One clock cycle ranges from
time TA+ to time TB. Only one active edge is included
in each clock cycle. For a hypothetical simulation m,
say there are 4 events e l , e2, e3, e4 that are scheduled
by the event scheduler. These events a" at times TI,
T,, T3 and T4 respectively.

In a traditional event driven simulator, these
events will be scheduled in the time wheel and
evaluated at their respective scheduled times. We
suggest different approach. Instead of scheduling events
el, e2, e3 and e4 at different times in the time wheel, we
do the following:

t t
e4

4
'r

1.

2.

3.

edge
T
B

All the events el, e2, e3, e4 are scheduled to be eval-
uated at the next active edge.
All events are put in an event orderer which checks
whether it can eliminate certain unnecessary evalua-
tions by ordering the events correctly. The event or-
derer levelizes and orders the evaluations so that
each element is evaluated at most once per clock cy-
cle.

The active edge is the evaluation edge for each cy-
cle. At the evaluation edge, the set of ordered events
is evaluated.

The advantages of this technique are that the time
wheel is sparse. All events are clubbed together at the
active edges of clock. Very mane granularity
scheduling is required. Also, many unnecessary
evaluations are eliminated by proper event ordering.

To prove this, let us consider an example of a
simple combinational circuit in FIGURE 2.

FIGUIRE 2. Reducing unnecessary evaluations

a
b

C
d

e
f

g
h

-n

-1

3

Assume that the cycle time is 20 ns. Inputs a, b, c,
d, e, f, g and h change at times t=2,4,6, 8, 10, 12, 14
and 16 respectively. Assume that there is no gate delay.
When input a changes, in a traditional event driven
simulator, gates G1, G5 and G7 will be scheduled to be
evaluated at time t=2. Similar events will be scheduled
to be evaluated at times t= 4, 6, 8, 10, 12, 14 and 16.
Thus during one cycle 24 gate evaluations will take
place.

If we delay all the events till the evaluation edge,
we realize that by ordering the events properly we need
to evaluate each gate exactly once. Thus we have 7 gate
evaluations. We save 17 unnecessary evaluations for
this simple circuit in a single cycle.

Using this technique will ensure that each
element in the circuit is evaluated only at the active edge
of clock. Also each element is evaluated at most once
during each clock cycle and is evaluated zero times if
it’s inputs do not change. Thus we guarantee that each
element will not be evaluated more than once in a single
clock cycle. Thus we eliminate unnecessary evaluations.

2.2 Cycle based oblivious simulation

The oblivious simulation technique is well under-
stood [11. Given a synchronous design, logic leveliza-
tion is applied to the design. Logic levelization is a
process of emulating the data flow from primary inputs
and clacked element outputs to primary outputs and
clocked element inputs. If there are any feedback loops,
the levelization technique cannot be applied. After lev-
elization is applied, each stage of the design looks like

FIGURE 3. View of a levelized design

an array of latches with combinational logic in between.
In FIGURE 3. we show the data flow in a levelized de-
sign.

In an oblivious simulation, the entire design is
evaluated cmce every time unit or when inputs change.
We study a modification of this technique. The entire
design is evaluated once every clock cycle. One possible
order of evaluation is the following.

At each stage of the design, during each clock cycle,

1. Clocked elements are clocked at the active edge of

2. Combinational logic is evaluated during the cycle

clock.

and the output of that logic is stable before the next
active clock edge.

Thus data flows from the primary inputs to the
primary outputs of the design with clocked elements and
combinational logic at each stage.

3.0 Measurement techniques
Having studied the techniques for cycle

simulation, it is important to estimate the performance
gain obtained by applying such techniques to the
existing simulators. These measurement techniques can
be applied to any simulator. The important factors are:

1. Trade-offs in event driven vs. oblivious simulation.

2. Performance gain by eliminating multiple
evaluations.

Clocked Clocked Clocked

Combinational Combinational

4

3.1 Event driven vs. Oblivious simulation
Two metrics are proposed to measure this trade-

off. By obtaining the following measurements, it is
possible to make intelligent decisions about the trade-off
between event driven and oblivious simulation.

3.1.1 ,4ctivity in the design

design activated every clock cycle. For my design, the
primary inputs will change according to the given
stimuhus vectors. Based on which inputs change, certain
parts of the design will need to be reevaluated. This
metric measure the average percentage that is evaluated
every clock cycle.

For example, in a typical compiled code
simulator, a number of C subroutines are created for
each module to evaluate the various elements. If we
treat each such subroutine as a unit of evaluation, then
we can find out the number of subroutines evaluated
every clock cycle.

From lhat we can define our measure as,

This metric measures average percentage of

% Activity = Average # of subroutines
executed per cycle X 1 0

Total # of subroutines in the entire
design

______________________________I_________

A similar measurement can be made for an
interpreted simulator by calculating the percentage of
elements activated.

TABLE 1. Routines executed for module instance A

If the % activity is high, then an oblivious
simulation approach should be chosen. If it is low, then
an event driven approach should be chosen.

3.12 Scheduling Overhead
Scheduling overhead determines what percentage

of ttte total run time is spent in the scheduler in an event
driven simulator. This can be done by profiling the
scheduler routines.

% Scheduling Overhead =

Time spent in scheduler X 100

Total time for simulation

If ihe scheduling overhead is high, and the
activity level is high then an oblivious approach might
be more suited. If the scheduling overhead is low and
the activity level is low then an event driven approach
will yield faster simulation.

3.2 Performance gain by eliminating multiple
evaluations

Two metrics are suggested to measure the
performance gain obtained by eliminating multiple
evaluations of an element during a clock cycle. These
mebrics assume that the simulator on which these
measurements are performed is currently an event
driven simulator in which levelization and ordering is
not E i g done to ensure that each element is evaluated
at mlost once during a cycle.

5

32.1 Estimating unnecessary evaluations
The assumption is that each element in the design

should be evaluated at most once in each clock cycle.
This is possible by levelizing and ordering the elements
in the design. We wish to measure the inefficiency of the
simulator in ordering evaluations by counting the
n&ber of elements that are multiply evaluated per
clock cycle. In the case of a typical compiled code
simulator, we assume that one subroutine corresponds to
one element in the design. Thus we wish to measure
how many subroutines are multiply evaluated per clock
cycle.

To understand this metric for a compiled code
simulator, assume that a verilog module A has been
compiled and the compilation produces 4 subroutines
for that module. Say we run this module for 3 clock cy-
cles. We calculate TABLE 1. shown above.

Then we calculate for each cycle, the numkr of
routines that were executed a certain number of times in
TABLE 2..

From the above tables and given module A we can ex-
tract the following information.

times exec

0

Total # of subroutines in module A
= 4

Avg # of Subroutines evaluations per cy-
cle
= 6 (TABLE1.)

Avg. # of subroutines evaluated 0 times per cycle - -
1 (TABLE2.)

cycle 1 cycle 2 cycle 3 Avg. all cycles

1 routine 2 routines 0 routines 1 routines

From these numbers we deduce the following:

1

2

Avg. # of subroutines evaluated at least once per clock
cycle =

Total # of subroutines in module A -
Avg. # of subroutines evaluated 0

times per cycle

For this example we see that avg. # of
subroutines evaluated at least once per clock cycle = 4 -
1 = 3. If we had an ideal simulator without multiple
evaluations, we would see exactly 3 subroutine
evaluations per cycle. But we see 6 subroutine
evaluations per cycle which means there are some
excess evaluations.

Hence,
Avg. # of excess evaluations per clock cycle =

Avg. # of subroutine evaluations per cycle -
Avg. # of subroutines evaluated at least

once per clock cycle

In this case

avg. # of excess evaluations per clock cycle=

6 - 3 = 3
% excess evaluations =

Avg. # of excess evaluations per clock

cycle X 100
__--_-_______-__________________________--------
Avg. # of subroutines evaluated at feast

once per clock cycle

~ ~~ ~

1 routine 0 routines 2 routines 1 routines

1 routine 0 routines 2 routines 1 routines
1

TABLE 2. Number of routines executed a certain number of times

3 1 routine 2 routines 0 routines 1 routines

6

For this example,

'% excess evaluations = 3 X 100 / 3
= 100%

:For a simulator for which there are many excess
evaluations, the % excess evaluations could be much
greater than 100.

3.2.2 Speedup factor
'We assume that all elements are equivalent in

terms (of execution time. In case of a compiled code
simulaitor, we assume that each subroutine take the same
amount of CPU time. This assumption is not totally
accurate but allows us to estimate the possible speedup
we can obtain by reducing the number of unnecessary
evaluations.

Speedup factor =

Avg. # of subroutine evaluations

,per cycle

Avg. ## of subroutines evaluated ut

leust once per clock cycle

In the example for module A, speedup factor = 6 / 3 = 2.
Speedup factor gives an approximate number to quanti-
fy the simulation speedup that cm be obtained by apply-
ing the levelization and ordering technique.

4.0 Results
We obtained the following results for 3 designs. They
are tabulated in TABLJZ 3..

From the above results, the following points can be
inferred.

1. % activity for our example designs were low. This
would suggest that an event driven simulation might
nun faster.

2. Scheduling overhead is not so high to justify
oblivious simulation.

3. About 25-40 % of the evaluated routines are
multiply evaluated in a clock cycle.

4. E€ all elements had same execution time, we could
expect a speedup by a factor of 1.25-1.40 by
eliminating excess evaluations.

5.0 Conclusions
In this paper we discussed cycle simulation

techniques. We proposed measurement techniques that
will estimate h e speedup obtained by applying cycle
simulation techniques to the existing simulators. The
proposed metrics will help to evaluate the various trade-
offs in choosing the correct simulation technology for
your design. By drawing inferences from the results as
shown in section 4, it is possible to identify the type of
simulator that will run your design the fastest. The
results also quantify the potential speedup due to the
proposed techniques. If the gain is substantial, a move to
include the proposed cycle simulation techniques in the
simulator can be justiiled.

--_.I

TABLE 3. Results for the designs

I DlesignB I 11.73 % I 5-10% I 38.8 % I 1.388 I

7

Further work is being done to identify areas that
could potentially speed up simulation. Efforts are also
being made to quantify the speedup obtained by
optimizing these mas.

6.0 Acknowledgements

We wish to thank Chronologic Simulation for
letting us use their simulator and for their part in
valuable discussions. We wish to thank Ser-Hou Kuang
and Paul Monschke for their valuable comments.

References
[I]
“SSIM A software levelized compiledcode simulator”, Proc.
Design Automation Conference, pp. 2-7. 1987.

Wang, L., Hoover, N. E., Porter, E. H., Zasio, J. J.,

8

