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Abstract 
Recent advances in Boolean satisfiability have made it 
an attractive engine for solving many digital VLSI de- 
sign problems such as verification, model checking, op- 
timization and test generation. Fault diagnosis and 
logic debugging have not been addressed by existing 
satisfiability-based solutions. This paper attempts to  
bridge this gap by proposing a satisfiability-based SD 
lution to  these problems. The proposed formulation is 
intuitive and easy to implement. It shows that satisfi- 
ability captures significant problem characteristics and 
it offers different trade-offs. It also provides new op- 
portunities for satisfiability-based diagnosis tools and 
diagnosis-specific satisfiability algorithms. Theory and 
experiments validate the claims and demonstrate its po- 
tential. 

1 Introduction 
The digital VLSI design cycle commonly starts with 
a behavioral description (specification) coded in some 
Hardware Description Language (HDL) (Fig. 1). This 
specification is translated to  a Register-Transfer Level 
(RTL) description and synthesized into a gate-level 
(logic) implementation. Design validation and optimiza- 
tion steps guarantee the correctness of the product from 
design errors as well as its performance according to the 
specification. Subsequent steps involve placement, rout- 
ing and physical optimization before the chip is fabri- 
cated. Diagnosis and failure analysis are the last steps 
before it is shipped to  the customer. If the fabricated 
chip fails testing, it undergoes failure analysis. 

Recent years have seen an increased use of Boolean 
Satisfiability (SAT) based tools in the design cycle. De- 
sign verification and model checking [3] [4] [SI [lo], test 
generation 171, optimization [12] and physical design 
1141, among others, have been successfully tackled with . .  - 
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SAT-based solutions. This is due to  recent advances 
in SAT solvers [9] 1111 that make them efficient plat- 
forms to solve these problems. It has also been reported 
[lo] that problems with SAT based formulations for in- 
dustrial circuits are usually solved in polynomial time. 
This is favorable because they are intractable and the 
worst-case behavior of a complete algorithm today is 
exponential. 

Although SAT-based solutions have tackled many cir- 
cuit design problems, design diagnosis has not yet been 
addressed in existing literature. Given an erroneous de- 
sign, a specification and a set of input test vectors, di- 
agnosis identifies malfunctioning portions of the design. 
Diagnosis is integral to failure analysis in helping to im- 
prove the design cycle, increase manufacture yield and 
shorten the time-to-market window [2] [6]. 

Depending on the stage of the design cycle, shown in 
Fig. 1, and the type of malfunction (“soft” or “hard“), 
diagnosis is required during design error diagnosis (logic 
debugging) and during fault diagnosis. Design ewoT di- 
agnosis occurs in early stages of the design cycle where 
the specification is some HDL (or RTL) description and 
the design is a logic netlist. Malfunctions are caused by 
specification changes, bugs in automated tools or the 
human factor 111. Logic debugging identifies lines and 
corrections in the erroneous netlist that correct it ac- 
cording to a specification. Fault diagnosis occurs when 
a fabricated chip fails testing. Given a faulty chip and 
a netlist, fault diagnosis identifies locations in the cor- 
rect netlist by injecting faults into it until the netlist 
emulates the behavior of the faulty chip. Since both 
problems have similar goals, we describe this work in 
terms of fault diagnosis unless otherwise stated. 

I t  is notable that diagnosis is an inherently difficult 
problem because the solution (search) space grows expo- 
nentially with the number of circuit lines, the number of 
faults and the various fault models : diagnosis space = 
(# ckt l ines)(# errors). This is because the specifica- 
tion (HDL or the failing chip) is treated as a “black 
box” controllable at the primary inputs and observable 
at the primary outputs (Fig. 2). Due to  this complex- 
ity, development of efficient diagnosis tools remains a 
challenging task. 
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Motivated by these observations, we present a SAT- 
based solution to  design diagnosis of multiple faults. The 
formulation is intuitive, straightforward to implement 
and decouples diagnosis from fault modeling, if neces- 
sary. Model-free diagnosis is a desirable characteristic 
for modern devices where fault effects may have a non- 
deterministic (unmodeled) behavior [2]. However, the 
method is easily extended to model-based diagnosis when 
fault models are available. 

It should be noted that in this work we do not de- 
velop a SAT solver, but propose a SAT-based solution 
to fault diagnosis where existing solvers can he utilized. 
We argue that SAT naturally captures essential char- 
acteristics of diagnosis and structural circuit properties. 
We also examine different implementation trade-offs and 
heuristics. To the best of our knowledge, this is the first 
work to  examine design diagnosis using SAT. Experi- 
ments with multiple faults demonstrate the efficiency 
and practicality of the approach. 

Section 2 con- 
tains background information and definitions. Section 3 
describes the proposed SAT-based formulation and its 
characteristics. Section 4 contains experiments and the 
last Section concludes this work. 

This paper is organized as follows. 

2 Background 
Traditionally, diagnosis techniques are classified as 
cause-effect or efect-cause techniques (61. Causeeffect 
analysis usually compiles fault dictionaries. Given a 
failing chip and a set of vectors u1, u2,. . . , uk from the 
tester, the chip responses are matched with those in the 
dictionary to return set of potential faults for each vec- 
tor. Effect-cause analysis does not use fault dictionaries 
but simulates input vectors and applies different tech- 
niques to  identify candidate faults. 

In both cases, sets of candidate faults 9, Fz,  . . . , Fk 
are returned. When each F, is injected in the netlist, 
it explains the (faulty or non-faulty) behavior of test 
vector alone. These sets are later zntersected F = 
Fl n F2 n . . . n Fk to return set F of faults that explains 
the chip behavior for all vectors ul, u2, .  . . , ur. 

The quality of diagnosis is related to its resolution, 
that is, its ability to return in F the line(s) where 
fault(s) reside. Due to fault equivalence [6], a solution 
may not he unique. Ideally, a solution contains only the 
actual and equivalent fault sites to  make it easier for the 
designer to probe these sites. 

In this work, we consider combinational circuits with 
primitives AND, OR, NOT, NAND, NOR, XOR and XNOR gates 
and full-scan sequential circuits with a fault-free scan- 
chain. We use Conjunctive Normal Form (CNF) SAT 
instances expressed as a logical AND (.) of clauses, each 
of which is the OR (+) of one or more literals. A literal 
is an instance of a variable x or its negation XI. We 
use the procedure in [7] to translate logic circuits into 

<F, Synthesis 
Design 
Error 
Diagnosis 
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Diagnosis 

Figure 1: Digital VLSI design flow 

Figure 2: Fault diagnosis and logic debugging 

CNF form. Given a CNF formula, a SAT solver finds 
a variable assignment that satisfies the formula or it 
proves that the formula cannot he satisfied. 

Without loss of generality, we describe our algorithms 
on circuits with m primary inputs X = XI,XZ,. . . ,x, 
and a single primary output y = f(x~,xz,. . . ,xm) = 
f (X).  The method is easily generalized to multiple 
output circuits. We use the names L = { L I ,  1 2 , .  . . , ln} 
to represent internal circuit lines including stems and 
branches. The method in Section 3 adds circuitry to  
the original circuit. This new hardware requires two ex- 
t ra  lines per original circuit line. We use the notation 
S = { s l , s z , .  . . ,sn} and W = {wi,w2,. . . , wn} to  label 
these lines. 

In this presentation, variables for all circuit lines 
xi,Lc, wi and y are defined to model circuit constraints 
under simulation for each vector u j .  To avoid confusion, 
we use the notation x:>l!,4' and y j  for these variables 
and X j , L j  and W j  for the respective sets (vectors) of 
variables. Under this notation, superscript j matches 
the index of simulated test vector v j .  The notation 
S = { s ~ , s z , .  . . , sn} is used to indicate both variable 
and line names. Variables for lines S are common to  all 
test vectors. 
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3 SAT-based Design Diagnosis 
Given a logic netlist and a set of vectors vi ,  uz, . . . , uk, 
the algorithm introduces new logic and compiles a CNF 
formula @. This formula has two components. 

The first component is the conjunction of k CNF for- 
m u l a s C j ( L j , W j , X j , y j , S ) ,  1 < j  < k .  EachsuchCj  
enforces constraints of test vector vj on the logic netlist 
and potential fault sites. Fault locations are encoded 
in the circuit with extra hardware. The second compo- 
nent E,v(S) encodes constraints for  the cardinality N 
of inlected faults. These constraints are also coded with 
new hardware. The value of the number of faults N is 
a user-specified parameter. 

The complete formula @ is expressed as: 

k 

@ = E N ( S ) . n c q L j , W j , x j ,  Y j 
>=I 

Intuitively, nfl  Cj(L3, W j , X j ,  yj,  5’) requires that 
every candidate set of faults satisfies every Cj constraint 
for all vectors vi. In other words, faults are intersected 
for all vectors as in traditional diagnosis (Section 2). In 
the subsections that follow, we describe how to com- 
pile each-component of @ with theory and examples for 
model-free diagnosis. We also discuss memory require- 
ments and propose a number of heuristics to improve 
run-time performance as well as memory utilization. We 
finally argue how the proposed methodology can be ex- 
tended to  perform model-based diagnosis. 

3.1 Test Vector Constraints 
This component of is comprised of k CNF formulas 
Cj to  model circuit and fault location constraints for 
vector vj. First, the circuit is modified to reflect the 
potential presence of faults at various circuit lines. To 
model the presence of a fault on line l,, a multiplexer 
with select line si is attached to  this line as explained 
in [13]. This multiplexer is later translated into CNF 
format and added to the formula. 

Consider the circuit in Fig. 3(a), for example. The 
presence of a fault on line 1 = g + h can be represented 
by a multiplexer with select l ines,  as shown in Fig. 3(b). 
The first input of the multiplexer is connected to the 
output of gate g and the second input of the multiplexer 
is connected to a new line w to model the potential 
fault. The output of the multiplexer is connected to the 
original output of g. Observe that the functionality of 
the original or faulty circuit is selected when the value 
of the select line is 0 or 1, respectively [13]. 

The CNF for the multiplexer logic is given in Fig. 3(c). 
I t  can be seen that only 4 clauses are required. Hence, 
the CNF formula for the complete circuit in Fig. 3(b) is 
c = (XI +l’). (2, + l ’ ) .  (2; +z;+l) .  ( s + l ’ + t ) . ( s + l +  
t’)~(s’+w’+t)~(s’+w+a’)~(23+y)~(Z+y)~(zj+t’+y’). 

Once multiplexers are introduced at every line, the 
new circuit is translated to CNF. To get the final C3, 
we need to  insert clauses to represent input/output cir- 
cuit behavior constraints for the test vector q. This 
can be done with a set of unit-literal clauses for the set 
of primary input variables ZI, 2 2 , .  . . , 2 ,  and primary 
output y. These literals agree with the respective logic 
values of the vector v j ;  that is, if uj assigns a logic 1 (0) 
to input zj then 4 (4’) appears in the formula and so 
on. 

Ezample: Recall the circuit in Fig. 3(a) and assume 
there is a single stuck-at 1 fault on line 1. The input 
test vector U = (x1,z2,z3) = (1,0,1) detects the fault 
as a logic 1 appears at  the output of the good circuit 
while a logic 0 appears at the output of the faulty one. 
The construction requires unit-literal clauses X I ,  2 2 ,  2 3  
and y’ to be added to C .  Hence, the final CNF formula 
for vector U is C” = C .  z1 . z; .z3 . y‘. 

This process is repeated for every test vector u j ,  j = 
1..  . k to get CNFs Cj (Lj ,  W j , X j ,  yj, S). Note that 
each such formula requires a new set of variables (and 
literals) for primary inputs (Xj) ,  primary outputs (yj), 
internal circuit lines ( U )  and fault sites ( W j ) .  This 
is because every input test vector may translate into a 
different set of constraints for circuit lines and fault lo- 
cations. However, only one set of select line variables 
S = SI? s,,. . . , s, is used because the fault(s) of a solu- 
tion must satisfy all vector constraints simultaneously. 
The second component, described next, constrains the 
cardinality N of these faults. 

(S+l‘+Z) (S+l+Z‘) 
(S‘+W‘+Z) (S’+W+Z’) W 

(C) 

Figure 3: Modeling Fault Sites 

3.2 Fault Cardinality Constraints 
This component attaches additional hardware to the cir- 
cuit that enforces constraints E N ( S )  and requires a solu- 
tion set with at  most N faults. When the circuit and the 
added hardware from subsections 3.1 and 3.2 are trans- 
lated into CNF, we obtain formula @. We use an exam- 
ple to provide the intuition for the single fault (&(S))  
case first. Later, we give the hardware construction that 
generalizes results to  multiple faults. 
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Example: Consider the formula C" computed by the 
first component. This formula models the circuit in 
Fig. 3(b) under simulation of test vector u = ( l , O ,  1). 
Assume s (multiplexer select line) is introduced as an 
additional unit-literal clause so that the formula be- 
comes C" = C . X I  . x; . x3 . y' . s. Given this new 
C", a SAT solver will attempt to  find a satisfying vari- 
able assignment for the circuit lines and the variable w 
so that the circuit emulates the faulty chip behavior for 
vector U. The multiplexer will be forced to select line w 
and the solver will return w = 1 to indicate a stuck-at 
1 fault on line 1 .  

The general idea to code E,v(S) is an extension of 
the example above. That is, formula @ can be updated 
with clauses that enumerate exhaustively all possible 
sets of fault sites. These clauses will enforce subsets 
sil, si2,  . . . , siN of S t o  be set to a logic 1 and indicate 
that N faults are excited. Although this formulation for 
E N ( S )  is intuitive, it requires an exponential number of 
clauses to  be inserted explicitly into the formula. 

To overcome a memory explosion with increasing val- 
ues of N, we follow a different approach and encode 
E N ( S )  using the hardware construction shown in Fig. 4. 
This hardware acts as a counter, forcing the SAT solver 
to "enumerate" sets of N fault sites. In that figure, 
thick lines indicate buses of O(1ogn) bit-width (N 5 n) 
and all other lines represent single bit buses. 

The hardware in Fig. 4 performs a bitwise addition of 
the multiplexer select lines S = SI, ~ 2 , .  . . , sn and com- 
pares the result to the user-defined number of faults N. 
The output of the comparator is "forced" to logic 1 with 
a unit-literal clause so that the bitwise addition of the 
members of S (that is, the set of fault sites enumerated) 
is always equal to N. As with the select lines themselves, 
the variables introduced for this hardware are common 
to all vectors u j .  

It can be shown that the number of CNF clauses intro- 
duced with this hardware construction is linear O(n) but 
we omit the proof due to  lack of space. Intuitively, this 
implicit hardware representation for E N ( S )  provides a 
tradeoff between time and space. In the section that 
follows, we argue that modern SAT-solvers take advan- 
tage of this trade-off in practice and that they avoid an 
exponential explosion in the time domain. Experiments 
in Section 4 confirm this observation. 

3.3 Implementation Details 
As explained, a multiplexer requires 4 additional clauses 
and the counter construction in Fig. 4 is done with O(n) 
clauses. Therefore, space requirements for @ are linear 
O(nk)  in both the number of circuit lines n and the 
number of vectors k .  

Although space efficient, for large industrial circuits 
the formula @ may grow quickly with the number of 
vectors. To further reduce space requirements yet pre- 

OUT=l 

Figure 4: Hardware for multiple errors 

current 
solution 

Figure 5: Implementation heuristics 

serve efficiency, one may compile a set of formulas 
a*.. . . Each formula encodes constraints for 

p distinct test vectors to keep the memory requirements 
low. Intuitively, 0 is the conjunction of all these for- 
mulas @". To create @" we place multiplexers only on 
the fault sites that qualified @"-I.  The rationale of the 
heuristic lies in the fact that in diagnosis a small number 
of vectors (such as p = 10 vectors) usually screens the 
majority of invalid candidates 151 [13]. Consequently, 
only a few fault sites and respective multiplexers (in 
our experiments less than 10% of the circuit lines on 
the average) are introduced in subsequent phases of the 
algorithm. As the discussion in Section 2 indicates, the 
number of fault sites progressively reduces as i increases. 

In the remainder of this subsection, we discuss tame 
requirements and speed-up heuristics. We also explain 
why the proposed SAT-based formulation performs (but 
it is not limited to) model-free diagnosis. 

Modern SAT-solvers 191 [ll] are enriched with clause- 
learning and backtracking techniques to  help prune the 
solution space. To take advantage of these techniques, 
the SAT solver is modified as follows. 

For every multiplexer with select line si and inputs 1, 
and wi, clause (si+w:') is added for vector vi t o  denote 
the logic implication si' + w:'. This has the desirable 
effect that  when fault on line l i  is not selected (si = 0), 
then the value on wi is immediately set to logic 0 to 
prevent unnecessary branching of the SAT solver on wi.  

Additionally, as soon as the solution of fault sites 
si,, s i z ,  . . . , s iN is returned, the SAT-solver does not re- 
set and start to search for another solution from scratch. 
Instead, the clause ( s : ~  + SI, + . . . + s i N )  is immedi- 
ately added as a learned claCse. This is illustrated in 
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Fig. 5 where dotted lines indicate explored portion of 
the solution space. Upon discovery of a solution, the 
tool backtracks and may reuse part of the past compu- 
tation to identify other solution(s) or return unsatisfia- 
bility (no additional solutions). This is useful in fault 
diagnosis where all actual and equivalent solutions need 
be probed by the test engineer. Experiments show that 
this heuristic can improve performance substantially. 

To improve performance further, the algorithm origi- 
nally inserts multiplexers only at stmctural dominators 
161 of the circuit. This is sufficient for model-free diagno- 
sis since any fault effect on a line covered by a dominator 
will also be present at  the dominator. This has the ben- 
efit that the size of the set W is smaller and easier to 
tackle by the solver. Once a set of dominator-solutions 
is identified, a second pass is run to find solutions in 
their respective fan-in cones. 

We now elaborate on the model-freelmodel-based di- 
agnosis nature of the approach. The SAT-based formu- 
lation does not make any assumption on the logic value 
of the fault for each vector uj. Therefore, it performs 
model-free diagnosis. This is a desirable characteristic 
because it may capture faults with “non-deterministic” 
behavior [2]. However, i t  is interesting to  reason about 
the logic assignments to variables , u(~, . . . , w:, on 
circuit lines l i , ,  li,, . . . , li, of a solution for all vectors 
uj . 

As explained, these logic line assignmenh are required 
to  guarantee that the netlist emulates the behavior of 
the specification for q. The test engineer may use these 
values to determine the behavior of the fault during fault 
modeling [6]. Notice that proper reasoning on the val- 
ues of W j  allows for modeled diagnosis as well. This 
is achieved if the solver enumerates fault models on the 
suspicious lines “on the fly” during execution. For ex- 
ample, a stuck-at 1 fault on line 1“ is emulated if we set 
w: = 1 for all values (vectors) of j. This can be done 
by adding w:,Vj, as unit-literal clauses into a. 

Because of all these desirable characteristics, we con- 
clude that SAT provides an attractive platform for fault 
diagnosis. Experiment,s presented in the Section that 
follow confirm its robustness in practice. 

. .  

4 Experiments 
In this Section we present experiments for a prototype 
tool implemented with the SAT-solver described in [Q]. 
Experiments are conducted for single and double stuck- 
at faults in the ISCAS’85 and ISCAS’89 benchmark 
circuits. We use optimized versions of the ISCAS’85 
circuits in order to simulate a typical fault-diagnosis 
environment. For the ISCAS’H9 circuits, we used full- 
scan versions of the original benchmark circuits. Using 
the original, non-optimized versions makes the diagno- 
sis process harder because of redundancies present in 
the circuits. 

Table 1: Single stuck-at faults 

I ckt I Y of 1 Y of I Y fault sites I CPU (sec) I 

Due to lack of space, we present results only for stuck- 
at faults. Since most common design errors are modeled 
in terms of stuck-at faults [l], experiments presented 
here are expected to be representative for logic debug- 
ging as well. The locations of the faults are selected 
at random. We run experiments on a SUN Blade 100 
workst,ation with 512MB of memory. Ten experiments 
are performed for each circuit and for each fault case. 
Average values are reported in the next paragraphs and 
run-times are in seconds. 

Table 1 contains results on single stuck-at faults and 
Table 2 shows information in a similar manner for don- 
ble faults. The first column of each table has the circuit 
name and the second column contains the number k of 
test vectors used in diagnosis. This set contains mainly 
vectors with failing responses. Test vector generation 
is not the subject of this work [7] .  The third column 
has the number of initial clauses for the dominator pass 
before learned clauses are added. These numbers con- 
firm that memory requirements are linear to circuit size 
and to the number of vectors. For example, C432 re- 
quires approximately half the number of clauses of C880 
because it has nearly half the number of lines. 

The number of fault sites returned are found in 
columns 4 and 5. Column 4 shows the number of fault 
sites at  structural dominators and column 5 shows the ’ 
number of equivalent fault sites returned. These num- 
bers confirm the accuracy and resolution of the a p  
proach. The last two columns have CPU times. Col- 
umn 6 contains the average runtime per fault location 
for the dominator step. Column 7 contains the average 
runtime per fault for each solution in the second pass. 
The total runtimes for the first and second pass can be 
determined by multiplying the numbers in columns 4 
and 6 and columns 5 and 7 respectively. These numbers 
suggest that SAT is very efficient at performing diagno- 
sis. 
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Without Heuristic With Heuristic 

I name I vectors I clauses I dam. I all I dOml all 1 

S35932 1,500,907 40.78 19.63 
S38417 1,758,242 42.12 10.73 
S38584 20 1:765,807 3 20 44.76 15.48 

The benefit of the heuristics in Section 3 is depicted 
in Fig. 6 that shows the difference in run-times for single 
faults when they are used. Recall that the first heuristic 
requires variable wi on line 1, immediately to assume a 
logic 0 once st is not selected for vector uJ .  The second 
heuristic backtracks once a solution is found to  reuse 
previous computation and return the remaining solu- 
tions. Run-times indicate that  the added clauses allow 
the SAT solver to prune the solution space. 

Experiments demonstrate the effectiveness, flexibility 
and practicality of the SAT-based solution to design di- 
agnosis. Our formulation can be scaled to larger indus- 
trial circuits, by using the approach described in section 
3.3.  For example, it can be experimentally shown that 
using two passes of 10 vectors each for S35932 reduces 
the formula size for each p a s  to approximately 788,447 
clauses with a runtime overhead of only 6% . Moreover, 
it is possible that in some cases the total runtime may 
actually be shorter because most of the locations are 
screened out in the first pass [5] (61 [13]. 

In the future, we plan to enhance the technique with 
structural circuit information to improve performance. 
We also intend to  develop diagnosisspecific satisfiabil- 
ity algorithms and techniques that use the information 
returned by SAT to perform fault modeling. 

5 Conclusions 
A satisfiability-based formulation of multiple fault diag- 
nosis and logic debugging was presented. The method 
is intuitive and practical within an industrial environ- 
ment. Theoretical and experimental results on multiple 
faults confirm that Boolean satisfiability provides an ef- 
ficient and effective solution to design diagnosis. This 
offers new opportunities for satisfiability-based diagno- 
sis tools and diagnosis-specific satisfiability algorithms. 
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