
Scalable Exploration of Functional Dependency by
Interpolation and Incremental SAT Solving

Chih-Chun Lee, Jie-Hong R. Jiang, Chung-Yang Huang

EE Dept./Graduate Inst. of Electronics Engineering
National Taiwan University

Alan Mishchenko
Dept. of EECS

University of California, Berkeley

ABSTRACT
Functional dependency is concerned with rewriting a Boolean
function f as a function h over a set of base functions {g1, …, gn},
i.e. f = h(g1, …, gn). It plays an important role in many aspects of
electronics design automation (EDA), ranging from logic
synthesis to formal verification. Prior approaches to the
exploration of functional dependency are based on binary
decision diagrams (BDDs), which may not be easily scalable to
large designs. This paper proposes a novel reformulation that
extensively exploits the capability of modern satisfiability (SAT)
solvers. Thereby, functional dependency is detected effectively
through incremental SAT solving and the dependency function h,
if exists, is obtained through Craig interpolation. The main
strengths of the proposed approach include: (1) fast detection of
functional dependency with small memory consumption and thus
scalable to large designs, (2) a full capacity to handle a large set
of base functions and thus discovering dependency whenever
exists, and (3) potential application to large-scale logic
optimization with different design constraints. Experimental
results show the proposed method is far superior to prior work and
scales well in dealing with the largest ISCAS89 and ITC99
benchmark circuits with up to 200K gates.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids -- Automatic Synthesis,
Optimization, Verification; J.6 [Computer-Aided Engineering]:
Computer-aided design (CAD).

General Terms
Algorithms, Optimization, Synthesis, Verification

Keywords
BDD, Boolean Satisfiability, Craig Interpolation, Functional
Dependency, Refutation Proof

1. INTRODUCTION
Functional dependency [1] appears commonly among a set of
Boolean functions {f1, ..., fn} in VLSI circuit design as a function
fi (called the target function) can often be reexpressed as some
function h (called the dependency function) over a subset of the
functions (called the base functions). The exploration of
functional dependency plays an important role in many aspects of
EDA, ranging from logic synthesis to formal verification. For
instance, it leads to the identification of redundant registers in
RTL synthesis [2][3], resubstitution and simplification of Boolean
functions in both technology-independent and technology-
dependent logic synthesis [4], BDD minimization [5] and state

space reduction [1][6][7] in formal verification, search space
reduction in SAT solving [8], etc. Advances on the exploration of
functional dependency may benefit a wide range of applications.

Given a set of Boolean functions {f1, …, fn}, we would like
to know if any fi can be written as h(f1, …, fi–1, fi+1, …, fn).
Conventional approaches [1] to the exploration of functional
dependency rely mostly on BDDs [9]. Unfortunately computation
using BDDs suffers from the memory explosion problem and thus
is not scalable to manipulate large designs. In contrast, SAT
solving consumes little memory (linear in the input size) at the
cost of time resources and thus is more robust at least in
representing large designs. Recent advances, see e.g. [10][11], in
SAT solving have made it a very efficient Boolean reasoning
engine and a viable alternative to BDD. More and more logic
synthesis and verification algorithms shift their computation
paradigm from BDD to SAT, e.g. [12][13]. However, formulating
the computation of functional dependency as pure SAT solving is
not straightforward due to the difficulty in deriving the
dependency function h, whose derivation in BDD-based
computation is in contrast immediate.

This paper demonstrates, for the first time, that the
exploration of functional dependency (including efficient
derivation of dependency function) can be achieved with pure
SAT solving. In particular, a dependency function, if exists, can
be obtained through the construction of interpolants from a
refutation proof of a SAT solver. Essentially, Craig interpolation
theorem [14] lays the foundation. Moreover, to detect functional
dependency for different target functions and to obtain different
dependency functions for a target function, incremental SAT
solving is adopted to reuse learned clauses. Experimental results
show encouraging improvements over BDD-based approaches.

The main results of the paper include (1) a new SAT-based
derivation of dependency function using Craig interpolation,
which enables a pure SAT solution to the exploration of
functional dependency, and (2) an incremental SAT-based
enumeration of target and base functions, which effectively
reduces the search space for solving similar SAT instances.
Practical experience shows that a pure SAT formulation of
functional dependency avoids the BDD memory explosion
problem and is scalable to large designs. It is powerful in
detecting functional dependency even among a large set of base
functions.

The paper is organized as follows. After preliminaries are
introduced in Section 2, our SAT formulation of functional
dependency is detailed in Section 3. The proposed approach is
evaluated with experimental results in Section 4. Section 5
concludes this paper and outlines some future research directions.

2. PRELIMINARIES
As a notational convention, in the sequel symbols “∧”, “∨”, and
“¬” denote Boolean AND, OR, and COMPLEMENT operations,
respectively. The cardinality (or size) of a set S is denoted as |S|.
The problem formulation of functional dependency and some
background on SAT solving are given as follows.

2.1 Functional Dependency
Functional dependency is defined as follows.

Definition 1. Given a Boolean function f: Bm → B and a vector of
Boolean functions G = (g1(X), …, gn(X)) with gi: Bm→ B for i =
1, …, n, over the same set of variable vector X = (x1, …, xm), we
say that f functionally depends on G if there exists a Boolean
function h: Bn → B, called the dependency function, such that
f(X) = h(g1(X), …, gn(X)). We call functions f, G, and h the target
function, base functions, and dependency function, respectively.

Note that functions f and G are over the same domain in the
definition. Moreover, h needs not depend on all of the functions in
G.

The necessary and sufficient condition of the existence of the
dependency function h is given as follows.

Proposition 1. [1] Given a target function f and base functions G,
let h0 = {y ∈ Bn: y = G(x) and f(x) = 0, x ∈ Bm} and h1 = {y ∈ Bn:
y = G(x) and f(x) = 1, x ∈ Bm}. Then h is a feasible dependency
function if and only if {h0∩ h1} is empty. In this case, h0, h1, and
Bn\{h0∪h1} are the off-set, on-set, and don’t-care set of h,
respectively.

By Proposition 1, one can not only determine the existence of a
dependency function, but also deduce a feasible one.

To explore functional dependency for a given circuit netlist,
there are many choices of f and G. One may ask how to
effectively choose G for a specific f.

Definition 2. For a Boolean function f with input variables X =
(x1, …, xm), variable xi is a support variable of f if f(x1, …, xi–1, 0,
xi+1,…, xm) ≠ f(x1, …, xi–1, 1, xi+1,…, xm) .

For a functional vector G = (g1, g2, …, gn), its support variables
are the union of the supports of gi for i = 1, …, n.

Proposition 2. [1] There exists a feasible dependency function of f
with respect to G only if, for every support variable v of f, v is
also a support variable of G.

Proposition 2 can be used for fast screening in selecting the base
functions G.

2.1.1 BDD-based Exploration of Functional
Dependency
Conventional BDD-based exploration of functional dependency is
reviewed in order to contrast with the novel SAT-based approach.

Proposition 1 suggests a way of determining the existence of
a dependency function and its derivation. Essentially standard
image computation applies. Let yi be the output variable of gi.
Then the on-set, off-set, and dc-set of h can be derive by

h0(Y) = ∃X [R(X, Y) ∧ (f(X) ≡ 0)],

h1(Y) = ∃X [R(X, Y) ∧ (f(X) ≡ 1)], and

hdc(Y) = ¬(h0 ∨ h1),

respectively, where relation R(X, Y) = (y1 ≡ g1(X)) ∧ (y2 ≡ g2(X)) ∧
⋅⋅⋅ ∧ (yn ≡ gn(X)). The dependency function h(Y) exists if h0(Y) ∧
h1(Y) = false. All of the above operations can be done using BDDs.

Note that constructing the relation R(X, Y) along with the
image computation may suffer from memory explosion especially
when |G| is large even though the final BDDs of h0 and h1 can be
small. Therefore, it is necessary to restrict the size of the set of
base functions at the cost of losing completeness. Keeping |G|
small may often result in the nonexistence of the dependency
function. Once the search for a feasible dependency function with
respect to a set of base functions is failed, another set of base
functions is selected and the computation of functional
dependency repeats. Consequently, although some fast filtering
techniques, e.g. by Proposition 2, are available [1], BDD-based
computation is inefficient in that there may be too many
selections of G tested before functional dependency is discovered.
As will be seen later, the deficiency can be overcome in SAT-
based exploration of functional dependency.

2.2 Propositional Satisfiability
Let V = {v1, …, vk} be a finite set of Boolean variables. A literal l
is either a Boolean variable vi or its negated form ¬vi. A clause c
is a disjunction of literals. Without loss of generality, we shall
assume there are no repeated or complementary literals in the
same clause. A SAT instance is a conjunction of clauses, i.e., in
the so-called conjunctive normal form (CNF). In the sequel, a
clause set C = {c1, ..., ck} shall mean to be the CNF (c1 ∧ ⋅⋅⋅ ∧ ck).
An assignment over V gives every variable vi a Boolean value
either true or false. A SAT instance is satisfiable if there exists a
satisfying assignment such that the CNF valuates to true.
Otherwise it is unsatisfiable. Given a SAT instance, the
satisfiability (SAT) problem asks whether it is satisfiable or not.
A SAT solver is designated to solve the SAT problem.

Definition 3. Assume literal v is in clause c1 and ¬v in c2. A
resolution of clauses c1 and c2 on variable v yields a new clause c
containing all literals in c1 and c2 except for v and ¬v. The clause
c is called the resolvent of c1 and c2, and variable v the pivot
variable.

Proposition 3. A resolvent c of c1 and c2 is a logical consequence
of c1 ∧ c2, that is, c1 ∧ c2 implies c.

Theorem 1. [15] For an unsatisfiable SAT instance, there exists a
sequence of resolution steps leading to an empty clause.

Theorem 1 can be easily proved by Proposition 3 since an
unsatisfiable SAT instance must imply a contradiction. Often only
a subset of the clauses of the SAT instance participates in the
resolution steps leading to an empty clause.

Definition 4. A refutation proof Π of an unsatisfiable SAT
instance C is a directed acyclic graph (DAG) Γ = (N, A), where
every node in N represents a clause which is either a root clause
in C or a resolvent clause having exactly two predecessor nodes,
and every arc in A connects a node to its ancestor node. The
unique leaf of Π corresponds the empty clause.

Modern SAT solvers, such as Chaff [10] and MiniSat [11], are
capable of producing a refutation proof from an unsatisfiable SAT
instance.

2.2.1 Refutation Proof and Craig’s Interpolation
Theorem 2. (Craig Interpolation Theorem) [14] Given two
inconsistent clause sets A and B (i.e. the clause set A∪B is

unsatisfiable), then there exists a Boolean formula A# referring
only to the common input variables of A and B such that A ⇒ A#
and A# ⇒ ¬B.

The Boolean formula A# is referred to as the interpolant of A and
B. Detailed exposition on how to construct an interpolant from a
refutation proof in linear time can be found in [16][17][18]. Note
that the so-derived interpolant is in a circuit structure, which can
then be converted into CNF as discussed below.

2.2.2 Circuit to CNF Conversion
Given a circuit netlist, it can be converted to a CNF in such a way
that the satisfiability is preserved. The conversion is achievable in
linear time by introducing some intermediate variables [19][20].

3. SAT-BASED EXPLORATION OF
FUNCTIONAL DEPENDENCY

3.1 The Primary Construct
To formulate the exploration of functional dependency as SAT
solving, we introduce the dependency function network (DFN)
as shown in Fig. 1. For a given circuit netlist consisting of n + 1
Boolean functions {f0, …, fn}, suppose function f0 and the others
are identified to be the target function and base functions,
respectively. Then, in the notation of Section 2, f0 corresponds to f
and fi corresponds to gi for i = 1, …, n. The circuit netlist is
instantiated into two copies, identified as DFNon and DFNoff, in
the DFN. For every variable v in DFNon, there is starred
counterpart v* in DFNoff. Let yi and yi

* be the output variables of fi
and fi

*, respectively. The circuits DFNon and DFNoff can be
converted to CNFs Con and Coff, respectively, in linear time. In
addition, the output of the target function f in DFNon is asserted to
true, i.e., y0 = 1; that of f* in DFNoff is asserted to false, i.e., y0

* =
0. Furthermore, equality constraints (yi ≡ yi

*) are imposed for i =
1, …, n. Thereby the entire CNF CDFN is

Con ∧ Coff ∧ y0 ∧ ¬y0
* ∧ (y1 ≡ y1

*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn
*), (1.1)

where (yi ≡ yi
*) is the shorthand for (yi ∨ ¬yi

*) ∧ (¬yi ∨ yi
*).

The intuition behind this construct is that formula Con ∧ y0
(respectively Coff ∧ ¬y0

*) imposes the constraint that the
valuations over input variables (x1, …, xm) (respectively (x1

*, …,

xm
)) must be the on-set of f (respectively off-set of f). By

Proposition 1, we can thus test if h0 and h1 are disjoint. Precisely
speaking, we conclude the following.
Theorem 3. Given a target function f and a set of base functions
gi for i=1, …, n, a dependency function h exists if and only if the
CNF CDFN of the corresponding DFN is unsatisfiable.

Proof: (⇒) By Definition 1, f can be expressed as h(g1(X), …,
gn(X)). Proposition 1 asserts that the onset h1 and offset h0 of h
must be disjoint. Observe that h0 and h1 are essentially the sets of
satisfying assignments of variables yi of DFNon and yi

* of DFNoff,
respectively. Hence CNF CDFN, which is the conjunction of Con
and Coff, is unsatisfiable.

(⇐) For CDFN is unsatisfiable, there are two cases. For the first
case, Con or Coff is unsatisfiable. It happens only when f is a
constant function. Con (Coff) is unsatisfiable if and only if f is
constant zero (one). In this case, we may express f as a function
over any base functions. For the second case, Con and Coff are both
satisfiable. Then unsatisfiable CDFN implies its clauses of the
equality constraints (yi ≡ yi

*) are violated. That is, the sets of
images of the onset and offset of f under the base functions are
disjoint. By Proposition 1, we know that h must exist. ■
In the sequel we shall assume a target function is non-constant.
Remark 1. Note that, although DFN is similar to the miter
structure used in combinational equivalence checking, the
underlying principle is completely different. The DFN construct
differs from the miter structure in that: Firstly, the sets of input
variables of DFNon and DFNoff are disjoint. Secondly, the output
variables of the target functions of DFNon and DFNoff are asserted
to true and false, respectively. Thirdly, the equality constraints are
imposed only on the corresponding pairs of base functions.

We show how the dependency function can be derived using
interpolation provided that the clause set CDFN is unsatisfiable. To
apply Theorem 2, consider partitioning the clause set CDFN into
two subsets A and B. We claim the following.

Corollary 1. For unsatisfiable CDFN = A ∧ B with A = Con ∧ y0
and B = Coff ∧ ¬y0

* ∧ (y1 ≡ y1
*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn

*), the resultant
interpolant A# derived from a refutation proof yields a desired
dependency function h.
Proof: Observe that the common variables of A and B are Y =
(y1, …, yn), which is desirable for the dependency function. Since
A ∧ B is unsatisfiable, by Theorem 2 there exists an interpolant A#
which refers only to Y. In addition, conditions A ⇒ A# and A# ⇒
¬B suggest that the set of valuations over variables Y satisfying
A# must be an over-approximation of h1(Y) and must be disjoint
from h0(Y). Hence, A#(Y) is a valid implementation of the
dependency function h(Y) with respect to the underlying target
and base functions. ■
Therefore, as long as a SAT solver can produce an interpolant
from a refutation proof, it can be exploited to generate the
dependency function. The overall algorithm of the exploration of
functional dependency is sketched in Fig. 2.

Figure 1. Dependency Function Network.

=

= =

…

…

… …

1 0

DFNofDFNon

0y *
0y*y2

*
ny… … 1y 2y ny

1x 2x mx *
mx*x1

*x2

Constraint Part

Circuit Part

*y1

Note that the choice of clause sets A and B is not unique. For

instance, letting A = Con ∧ y0 ∧ (y1 ≡ y1
*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn

*) and B =
Coff ∧ ¬y0

* is valid as well. In fact, different refutation proofs and
different choices of A and B can be exploited to obtain the
flexibilities implementing the dependency function.
Remark 2. One reason making our SAT-based approach
outperform BDD-based ones is due to the efficiency in getting
base functions. In our method, we can simply include all
candidate base functions rather than carefully select a subset of
the candidate functions. Therefore, our method can detect
functional dependency in one run. However, BDD-based methods
may require multiple runs.

3.2 Incremental SAT Solving
The above discussion assumes the target function is given.
However, for a given circuit netlist, there may be many different
choices of the target function. Often we need to detect functional
dependency for different target functions one at a time. Consider
we have explored the functional dependency for target function f0
and base functions {f1, …, fn}. Suppose now we want to switch
the target function to f1 and add f0 to the base functions. Only
slight modification is needed migrating from the original SAT
instance, CDFN0, to the new one, CDFN1, because the sets of base
functions are almost the same. Since the search spaces for the two
SAT instances are very similar, incremental SAT solving [21] is
helpful in amortizing the computation overhead. We investigate
how to incorporating incremental SAT solving in our framework
by reusing helpful clauses learned from solving previous SAT
instances in subsequent computation.

Since not all previously learned clauses are valid to inherit in
solving the current SAT instance, invalid clauses need to be
disabled. To avoid sophisticated clause removal, we adopt the
MiniSat [11] interface, where unit assumptions [11] can be made
on a list of literals such that the subsequent SAT solving is
restricted to the specified solution subspace and the assumptions
are discharged upon return. We introduce auxiliary variables and
make unit assumptions on them to enable or disable “dynamic
clauses.” Let the auxiliary variable controlling clause c be αc. We
replace c in the original SAT instance with the new clause (αc ⇒
c) such that c is enabled (disabled) when αc = 1 (0). Because in
our case these “dynamic clauses” are resulted from the equality
constraints of CDFN, we introduce auxiliary variables αi as the
switches of the conditional satisfaction of equality constraints (yi
≡ yi

*). For αi = 1 (0), equality constraint yi ≡ yi
* is turned on (off).

For fi to be the target function and the others the base functions,
the entire CNF CDFN of Eq. (1.1) now becomes

Con ∧ Coff ∧ yi ∧ ¬yi
* ∧ (α0 ⇒ (y0 ≡ y0

*)) ∧ (α1 ⇒ (y1 ≡ y1
*)) ∧ ⋅⋅⋅

∧ (αn ⇒ (yn ≡ yn
*)) ∧ α0 ∧ ⋅⋅⋅ ∧ αi–1 ∧ ¬αi ∧ αi+1 ∧ ⋅⋅⋅ ∧ αn.

Again to compute interpolants, we partition the above clause set
into two subsets A and B with

A = Con ∧ yi and

B = Coff ∧ ¬yi
* ∧ (α0 ⇒ (y0 ≡ y0

*)) ∧ (α1 ⇒ (y1 ≡ y1
*)) ∧ ⋅⋅⋅ ∧ (αn

⇒ (yn ≡ yn
*)) ∧ α0 ∧ ⋅⋅⋅ ∧ αi–1 ∧ ¬αi ∧ αi+1 ∧ ⋅⋅⋅ ∧ αn.

To check the satisfiability of the above CDFN, the unit clauses {yi,
¬yi

*, α0, ⋅⋅⋅, αi–1, ¬αi, αi+1, ⋅⋅⋅, αn} will be on the unit assumptions
of MiniSat. Effectively, the SAT solving is restricted to the
solution subspace with yi = 1, yi

* = 0, αi = 0 and αj = 1 for j ≠ i. If
the result is satisfiable, no functional dependency exists under the
target function. Otherwise, a conflict clause is returned, which
refers only to a subset of the auxiliary variables in addition to the
output variables yi and yi

* of the target function. It indicates some
of the unit assumptions are self-contradicting. Hence there exists a
dependency function that depends only on the corresponding base
functions. This property gives a quick answer if we are interested
only in the input size of the dependency function. On the other
hand, from this clause we may construct an interpolant under the
contradicting solution subspace and thus derive the dependency
function.

3.3 Enumeration of Different Dependency
Functions
For a fixed target function f functionally depending on a set of
base functions, it is often the case that the don’t care set
Bn\{h0∪h1} for the dependency function h is not empty. Hence
there is flexibility implementing h differently. Obtaining these
don’t cares is preferable. However, the capability of SAT solvers
is limited in this respect as they tend to find “a” satisfying
assignment or “a” refutation proof. A refutation proof uniquely
determines an interpolant and, thus, an implementation of the
dependency function. To overcome this deficiency, we propose
two methods identifying two different types of alternatives of a
dependency function implementation: those with the same support
variables and those with different ones. For the former, we reorder
the resolution sequence of a refutation proof to obtain different
interpolants and, thus, different implementations of the
dependency function. For instance, the approach in [22] is one
way of doing it. By proper strengthening and weakening the
interpolants, we may obtain a subset of the don’t cares. However,
practical experience suggests that the so obtained don’t care set
may not be large. For the latter, we block the SAT solver from
searching the same instance and enforce it to search a new
refutation proof with a different set of support variables. It can be
done by making proper unit assumptions under the MiniSat
interface.

4. EXPERIMENTAL RESULTS
The proposed algorithm was implemented in ABC [23] modified
to equip with the proof-logging version of MiniSat [11]. All the
experiments are conducted on a 3.2GHz Linux machine with 2GB
memory. The experiments are designed so as to demonstrate

1. the efficiency and scalability of SAT-based in contrast to
BDD-based computation [1],

2. the benefit incremental SAT formulation, and

3. the characteristics of the derived dependency functions.

Figure 2. Algorithm: Functional dependency by SAT.

FunctionalDependencyBySAT
 input: target function f and base functions {g1, …, gn}
 output: a dependency function h
 begin
 01 Construct clause set CDFN
 02 if (CDFN is UNSAT)
 03 Partition CDFN into clause sets A and B
 04 Derive an interpolant A# from refutation proof
 05 return A#

 06 return no solution
end

Table 1. SAT- vs. BDD-based Exploration of Functional Dependency.

 Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)
Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem

s5378 2794 179 52 25 398 283 173 1.2s 18m 1.6s 20m 0.6s 18m 7s 51m
s9234.1 5597 211 46 x 459 301 201 4.1s 19m x x 1.7s 19m 194.6s 149m
s13207.1 8022 638 190 136 1930 802 x 15.6s 22m 31.4s 78m 15.3s 22m x x
s15850.1 9785 534 18 9 907 402 x 23.3s 22m 82.6s 94m 7.9s 22m x x
s35932 16065 1728 0 -- 2026 1170 -- 176.7s 27m 1117s 164m 78.1 27m -- --
s38417 22397 1636 95 -- 5016 243 -- 270.3s 30m -- -- 123.1 32m -- --
s38584 19407 1452 24 -- 4350 2569 -- 166.5s 21m -- -- 99.4s 30m 1117s 164m

b12 946 121 4 2 170 66 33 0.15s 17m 12.8s 38m 0.13s 17m 2.5s 42m
b14 9847 245 2 -- 245 2 -- 3.3s 22m -- -- 5.2s 22m -- --
b15 8367 449 0 -- 1134 793 -- 5.8s 22m -- -- 5.8s 22m -- --
b17 30777 1415 0 -- 3967 2350 -- 119.1s 28m -- -- 161.7s 42m -- --
b18 111241 3320 5 -- 9254 5723 -- 1414.9s 100m -- -- 2842.6s 100m -- --
b19 224624 6642 0 -- * * * 8184.8s 217m -- -- * * * *
b20 19682 490 4 -- 1604 1167 -- 25.7s 28m -- -- 36 30m -- --
b21 20027 490 4 -- 1950 1434 -- 24.6s 29m -- -- 36.3 31m -- --
b22 29162 735 6 -- 3013 2217 -- 73.4s 36m -- -- 90.6 37m -- --

 (“--”: memory usage exceeds 1Gb. “x”: runtime exceeds 10000 seconds. “*”: circuit cannot be retimed using ABC [23].)

Large circuits from the ISCAS89 and ITC99 benchmark suits
are chosen. To have fair comparison with [1], functional
dependency among the transition functions of a circuit is explored.
Among the transition functions of a given circuit, each of them is
specified in turn as the target function and all others as base
functions. We then explore the corresponding functional
dependency and compute dependency functions if exist.

Table 1 compares our approach with the prior work [1]. Columns
1 and 2 respectively list the name and the number of nodes of
each circuit. The numbers of flip-flops, denoted #FF, of a circuit
and its retimed version are listed in Columns 3 and 6, respectively.
Among the flip-flops of an original circuit (respectively a retimed
circuit), those whose transition functions possess functional
dependency are counted in Columns 4 and 5 (respectively
Columns 7 and 8), denoted as #Dep. In particular, #Dep-S and
#Dep-B are obtained by the SAT- and BDD-based methods,
respectively. In fact, #Dep-S data are exact and complete except
for retimed b19 circuit, which is unavailable from ABC. In
comparison, the BDD-based method only succeeded in a few
circuits and detected only a subset of the dependency over a few
support variables.) The runtime (in seconds) and memory (in
Megabytes) usage are shown in the following columns. Note that
the reported memory usage includes the underlying system
memory whereas the prior work was built on VIS [24] and ours
on ABC. Despite the uneven comparison, the scalability of our
approach is evident and outperforms the prior work.

The strength of incremental SAT solving is shown in Fig. 3.
The x-axis and y-axis, respectively, represent the iteration number
and the runtime of solving a SAT instance at that particular
iteration. The y-axis is log-scaled. Five sample circuits of
different sizes from Table 1 are plotted for the first 100 iterations.
As can be seen in all of the plots, the runtimes of the first
iterations are the maximum of among their first 100 iterations. In
fact, all the circuits of Table 1 exhibit the same behavior. After
the first iteration, the runtimes for SAT solving decrease rapidly

and become relatively short and stable within about 10 iterations.
It demonstrates the effectiveness for incremental SAT solving.

The experiments tend to suggest that (1) the average runtime
for a circuit is linear in the number of its nodes and (2) the solving
time for an unsatisfiable SAT instance is often much shorter than
that for a satisfiable one. The statistics are plotted in Fig. 4. The
x-axis and y-axis, respectively, represent the number of nodes of
each circuit and the average runtime of SAT iterations. Both axes
are log-scaled. Every circuit in Table 1 is plotted as a spot in Fig.
4. The first tendency can be seen from the two regression lines
indicating highly (positive) correlated data set. The second
tendency can be seen from the fact that the line for the retimed
circuits is well below that for the original circuits. As evident in
Columns 4 and 7 of Table 1, more functional dependency exists
for the retimed circuits. Effectively, more unsatisfiable SAT
instances are there. It reflects the fact that in our experiments a
satisfiable instance usually takes longer time to solve than an
unsatisfiable one. It seems contradicting with common sense.
However, the tendency can be explained as follows. Because the
input sizes of interpolants are mostly very small (to be shown in
Fig. 5), it suggests that conflicts can be found locally. Also,
incremental SAT solving increases implicativity [25] and thus
enhances early conflict detection. Thus, decisions over only a few
variables might be enough to draw an unsatisfiable conclusion. In
contrast, in a satisfiable case to obtain a satisfying assignment,
decisions must be made over all variables.

We characterize the derived dependency functions in terms
of their input sizes in Fig. 5, where a single dependency function,
if exists, is derived for each transition function of a given circuit.
The x-axis and y-axis indicate the numbers of support variables
and of dependency functions, respectively. The y-axis is log-
scaled. As can be seen, most of the functions have less than 10
support variables. It demonstrates the fact that the derived
interpolants are mostly small. On the other hand, complex
functional dependency can also be detected easily by the SAT-
based approach. For instance, in the retimed b18 circuit, a

dependency function of input size around 300 is obtained, which
is not possible using BDD-based methods.

From practical experience in enumerating different
dependency functions for a target function, we note that the
number of available dependency functions (with different support
sets) varies greatly from function to function. A great amount of
trivial dependency exists due to the transitivity of dependency. It
results in vast redundant enumeration. How to effectively avoid
unnecessary enumeration remains to be done. Nevertheless, if the
candidate base functions are specified (e.g. for circuit rewiring),
finding a dependency function is easy. On the other hand, we
emphasize that the BDD-based method is more effective than the
SAT-based one in computing the don’t care set for a dependency
function. This deficiency of the SAT-based computation is due to
the fact that an interpolant (i.e. a dependency function) is with
respect to a refutation and contains no don’t-care information.

0.001

0.01

0.1

1

10

100

1 50 99
Iteration

Ti
m

e
(lo

g)

b19 (200k nodes) b18 (100k nodes)
b17 (30k nodes) b15 (10k nodes)

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1000000
Number of nodes (log)

A
ve

ra
ge

 ti
m

e
(lo

g)

Original

Retimed

1

10

100

1000

10000

0 10 20 30
Number of support variables

N
u

m
b

e
r

o
f

fu
n

c
ti

o
n

s
(l

o
g

)

s5378

s9234.1

s13207.1

s15850.1

s35932

s38417

s38584

5. RELATED WORK
The previous efforts closest to ours are [1] and [4]. Both of them
rely on BDD-based computation. In [1] combinational functional
dependency was generalized to sequential dependency. Here we
focus on the combinational one. In [4], similar to our enumeration
for different dependency functions, a BDD-based technique was
used. It allows a more implicit enumeration. However, the size of
the set of base functions was limited to no more than 16. Other
work [18] applied interpolation in the context of SAT-based
model checking for approximated image computation.

6. CONCLUSIONS AND FUTURE WORK
We have shown that the exploration of functional dependency can
be solved by a pure SAT-based formulation. Experimental results
demonstrated the great success of the proposed method. The
approach is scalable to large designs and discovers much more
functional dependency far beyond the capability of prior methods.
The success is attributed to several key ingredients including
Craig interpolation and incremental SAT solving. We hope that
our results may benefit several areas of logic synthesis and formal
verification, for example, in finding rewiring and resubstitution
candidates for circuit optimization, in identifying redundant
registers in RTL synthesis, in reducing state space in formal
sequential equivalence checking, etc. Future work includes
integrating our technique in logic synthesis and generalizing it for
other applications. In addition, it is interesting to explore new
applications of Craig interpolation.

ACKNOWLEDGMENTS
The authors would like to thank Prof. Robert Brayton for helpful
discussions and comments. This work was supported in part by
NSC grants 95-2221-E-002-432 and 95-2218-E-002-064-MY3.
AM was supported by the Intel-custom SRC grant 1444.001
"Innovative Sequential Synthesis and Verification."

REFERENCES
[1] J.-H. R. Jiang and R. K. Brayton. Functional dependency for

verification reduction. In Proc. CAV, pp. 268-280, 2004.

Figure 3. Runtime of the first 100 SAT iterations.

Figure 4. Average runtime for SAT iterations.

Figure 5. Frequency distribution of different support sizes.

[2] E. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits
generated from high-level descriptions. In Proc. ICCAD, pp. 428-
435, 1996.

[3] B. Lin and A. R. Newton. Exact redundant state registers removal
based on binary decision diagrams. In Proc. Int'l Conf. Very Large
Scale Integration, pp. 277-286, 1991.

[4] V. Kravets and P. Kudva. Implicit enumeration of structural changes
in circuit optimization. In Proc. DAC, pp. 438-441, 2004.

[5] A. J. Hu and D. L. Dill. Reducing BDD size by exploiting functional
dependencies. In Proc. DAC, pp. 266-271, 1993.

[6] C. Berthet, O. Coudert, and J.-C. Madre. New ideas on symbolic
manipulations of finite state machines. In Proc. ICCD, pp. 224-227,
1990.

[7] C. A. J. van Eijk and J. A. G. Jess. Exploiting functional
dependencies in finite state machine verification. In Proc. European
Design & Test Conf., pp. 9-14, 1996.

[8] E. Gregoire, R. Ostrowski, B. Mazure, and L. Sais. Automatic
extraction of functional dependencies. In Proc. SAT, 2004.

[9] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. Computers, pp. 677--691, August 1986.

[10] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proc. DAC, pp. 530-535,
2001.

[11] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT,
pp. 502-518, 2003.

[12] A. Mishchenko and R. Brayton. SAT-based complete don't-care
computation for network optimization. In Proc. DATE, pp. 418-423,
2005.

[13] A. Mishchenko, J. Zhang, S. Sinha, J. Burch, R.K. Brayton, and M.
Chrzanowska-Jeske. Using simulation and satisfiability to compute

flexibilities in Boolean networks. IEEE Trans. on CAD, vol. 25, no.
5, pp. 742-755, 2006.

[14] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen
theorem. J. Symbolic Logic, 22(3):250-268, 1957.

[15] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

[16] J. Krajicek. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. J. Symbolic Logic,
62(2):457-486, June 1997.

[17] P. Pudlak. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symbolic Logic, 62(3):981-998,
September 1997.

[18] K. L. McMillan. Interpolation and SAT-based model checking. In
Proc. CAV, pp. 1-13, 2003.

[19] G. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, pp.
466-483, 1970.

[20] D. Plaisted and S. Greenbaum. A structure preserving clause form
translation. J. Symbolic Computation, vol. 2, pp. 293-304, 1986.

[21] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Proc. DAC, 2001.

[22] R. Jhala and K.L. McMillan, “Interpolant-based transition relation
approximation”. Proc. CAV, pp. 39-51, 2005.

[23] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. Release 51205.
http://www.eecs.berkeley.edu/~alanmi/abc/

[24] R. K. Brayton, et al. VIS: a system for verification and synthesis. In
Proc. CAV, pp. 428--432, 1996.

[25] Y. Novikov and R. Brinkmann. Foundations of Hierarchical SAT-
Solving. In Proc. Int’l Workshop on Boolean Problems, 2004.

