
The AIGER And-Inverter Graph (AIG) Format
Version 20070427

Armin Biere, Johannes Kepler University, 2006-2007

17th May 2007

This report describes the AIG file format as used by the AIGER library. The purpose
of this report is not only to motivate and document the format, but also to allow in-
dependent implementations of writers and readers by giving precise and unambiguous
definitions.

Acknowledgements

The format went through various incarnations even before real code became available.
In particular the following colleagues gave invaluable feedback on earlier drafts.

Robert Brummayer, Alessandro Cimatti, Koen Claessen, Niklas Een, Marc Herb-
stritt, Hyondeuk Kim, Toni Jussila, Ken McMillan, Alan Mishchenko, Fabio Somenzi,
Niklas Soerenson, Allen Van Gelder.

We also want to thank Holger Hermanns who started the discussion on having a model
checking competition affiliated to CAV and also provided strong support after the idea
became more concrete.

Availability

You can download up-to date versions of this report, the AIGER library, and utilities
from http://fmv.jku.at/aiger.

1

The AIGER And-Inverter Graph (AIG) Format Version 20070427 2

1 Introduction

North face of the Eiger.

The name AIGER contains as one part the acronym AIG of And-Inverter Graphs and
also if pronounced in German sounds like the name of the ’Eiger’, a mountain in the
Swiss alps. This choice should emphasize the origin of this format. It was first openly
discussed at the Alpine Verification Meeting 2006 in Ascona as a way to provide a
simple, compact file format for a model checking competition affiliated to CAV 2007.

The AIGER format has an ASCII and a binary version. The ASCII version is the
format of choice if an AIG is to be saved by an application which does not want to use
the AIGER library. It is simple to generate and has less restrictions. The easiest way to
write an AIG in AIGER format is of course to use the AIGER library.

The binary format is more restricted and much more compact. It is easier to read and
thus is the format of choice for benchmarks and competitions. The average user can
either use the AIGER library to generate a binary file directly or if it is impossible
to use the library due to LICENSE or language restrictions, generate a file in ASCII
format and transform it into the binary format with the aigtoaig utility. The reverse
is also possible, if for instance a human readable version of an AIG in binary AIGER
format is required. Another usage of the aigtoaig tool is to validate AIGs in binary
AIGER format produced by other tools not using the AIGER library.

The AIGER And-Inverter Graph (AIG) Format Version 20070427 3

Let us start with some simple examples in ASCII format which all can be found in
the examples subdirectory. An AIGER file in ASCII format starts with the format
identifier string aag for ASCII AIG and 5 non negative integers M, I, L, O, A separated
by spaces.

The interpretation of the integers is as follows

M = maximum variable index
I = number of inputs
L = number of latches
O = number of outputs
A = number of AND gates

The empty circuit without inputs nor outputs consists of the single line

aag 0 0 0 0 0 header

The file that consists of the following two lines

aag 0 0 0 1 0 header
0 output

represents the constant FALSE. Note that the comments to the right are not part of the
file. The following file represents the constant TRUE:

aag 0 0 0 1 0
1

The single 1 in the header specifies that the number of outputs is one. In this case the
header is followed by a line which contains the literal of the single output.

The following file is a buffer

aag 1 1 0 1 0 header
2 input
2 output

and the following an inverter

aag 1 1 0 1 0 header
2 input
3 output !1

The maximal variable index is 1, the first number. The second number represents
the number of inputs. The first line consists of the single input literal. A variable is
transformed into a literal by multiplying it by two. In the first case the output specified
on the last line leaves the input unchanged. In the second case the output inverts the
input. The output literal 3 has its sign bit, the least significant bit, set to one accordingly.

An AND gate looks as follows

The AIGER And-Inverter Graph (AIG) Format Version 20070427 4

aag 3 2 0 1 1
2 input 0
4 input 1
6 output 0
6 2 4 AND gate 0 1 & 2

The literal representing the AND gate is 6 with variable index 3, the first number in the
header, which denotes the maximal variable index. The last number is the number of
AND gates.

An OR gate can be formulated as

aag 3 2 0 1 1
2 input 0
4 input 1
7 output 0 !(!1 & !2)
6 3 5 AND gate 0 !1 & !2

Let us now turn to a more complete combinational circuit

aag 7 2 0 2 3 header line
2 input 0 1st addend bit ’x’
4 input 1 2nd addend bit ’y’
6 output 0 sum bit ’s’
12 output 1 carry ’c’
6 13 15 AND gate 0 x ^ y
12 2 4 AND gate 1 x & y
14 3 5 AND gate 2 !x & !y
i0 x symbol
i1 y symbol
o0 s symbol
o1 c symbol
c comment header
half adder comment

The symbol table is optional and does not need to be complete, but may only contain
symbols for inputs, latches, or outputs.

Sequential circuits have latches as state elements. Here is a toggle flip flop, which has
no input, one latch, and two outputs, its current state and its negation:

aag 1 0 1 2 0
2 3 latch 0 with next state literal
2 output 0
3 output 1

Latches are always assumed to be initialized to zero. The same toggle flip flop with an
enable and additional explicit active low reset input:

The AIGER And-Inverter Graph (AIG) Format Version 20070427 5

aag 7 2 1 2 4
2 input 0 ’enable’
4 input 1 ’reset’
6 8 latch 0 Q next(Q)
6 output 0 Q
7 output 1 !Q
8 4 10 AND gate 0 reset & (enable ^ Q)
10 13 15 AND gate 1 enable ^ Q
12 2 6 AND gate 2 enable & Q
14 3 7 AND gate 3 !enable & !Q

The order of the literals and the definitions of the AND gates is irrelevant. The binary
format described more formally below places more restrictions on the order and also
does not allow unused literals.

2 Design Choices

• The format should allow to model combinational circuits.

• Structural SAT problems can be described.

• The format should allow to model sequential circuits.

• Model checking problems can be described.

• The operators are restricted to bit level.

• The set of operators needs to be as simple as possible.

• A compact standardized binary format should be available.

• The ASCII format should be as easy as possible to write by programs.

• The binary format should be as easy as possible to read by programs.

• A symbol table and comments can be included.

• Symbol table and comments can be ignored reading the file sequentially.

• Some simple form of extensibility should be possible.

3 Header

The AIGER format describes circuits by multi-rooted And-Inverter Graphs (AIGs). A
file in AIGER format has to start with a format identifier string, which is either aag for
ASCII format or aig for the binary format. After the format identifier string and one
space character follow 5 non negative integers M, I, L, O, and A in ASCII encoding. The

The AIGER And-Inverter Graph (AIG) Format Version 20070427 6

maximal variable index M is the first number in the header. The circuit has I inputs, L
latches, O outputs, and consists of A AND gates. If all variables are used and there are
no unused AND gates then M = I + L + A.

An unsigned respectively non negative integer is either 0 or a strictly positive ASCII
encoded digit followed by a sequence of arbitrary digits including 0. The a of the
format identifier string is the first character of the file. The format identifier string aag

respectively aig and the numbers are all separated by exactly one space character. The
header line ends with a new line character immediately after the last digit of the number
of ands A.

4 Variables and Literals

Literals are constants or signed variables and are also represented by unsigned integers.
The least significant bit of the unsigned word encoding a literal is the sign bit. The
remaining bits represent the variable index.

In essence, to obtain the sign bit of a literal we take its unsigned integer representation
modulo 2. A sign bit of one means negated, a sign bit of zero unnegated. To extract
the variable from a literal we divide it by 2. To obtain a literal from a variable in the
other direction we multiple the variable index by 2 and optionally add 1 if the variable
should be negated. A literal can be negated by just toggling its least significant bit.

The constant FALSE is represented by the literal 0, the constant TRUE by 1. This
implies, that FALSE is unnegated, while TRUE is negated.

AIGER only models cycle-accurate models. Latches are assumed to have a reset zero
state, i.e., are initialized to zero, and no explicit reset nor clock signal is necessary.
More general circuit models with non zero reset states or even non deterministic tran-
sition relations can be translated into the AIGER format by simple constructions. See
for instance the techniques implemented in smvtoaig to translate arbitrary flat and
boolean encoded SMV models into AIGER format.

5 ASCII Format

The ASCII format has aag as format identifier in the header, which is an acronym for
ASCII AIG. The names of files in the ASCII format are supposed to have an .aag

extension. The AIGER library also supports files compressed with GNU GZIP. In this
case an additional .gz suffix is expected.

After the header the I inputs are listed, one per line, as unnegated literal, i.e., repre-
sented as even positive integers. Then the L latches are defined. Again one latch per
line. Each line consists of exactly two positive integers separated by a space character.
The first is even and denotes the current state of the latch. The second is the literal that
defines the next state function of this latch.

Then the O output literals are listed, one per line. Here arbitrary literals are allowed.

The AIGER And-Inverter Graph (AIG) Format Version 20070427 7

This concludes the interface part and the definitions of the A AND gates follow.

The definition of an AND gate consists of three positive integers all written on one line
and separated by exactly one space character. The first integer is even and represents
the literal or left-hand side (LHS). The two other integers represent the literals of the
right-hand side (RHS) of the AND gate.

In order to be well formed, the I inputs, the current state literal of the L latches, i.e.,
the pseudo-primary inputs, and the LHS of the A AND gates are all different and define
exactly I + L + A literals. The other literals, except for the two constants 0 and 1,
are undefined and can not be used as output, as next state literal, nor on the RHS of
an AND. Furthermore, the definitions of the ANDs have to be acyclic. To be more
precise: The literal on the LHS of an AND is defined to depend on the literals on the
RHS after stripping sign bits. The transitive non reflexive closure of this dependency
relation has to be acyclic.

In the ASCII format both checking for undefined literals and checking for cyclic de-
pendencies has to be done explicitly. This is the price one has to pay for a simple, easy
to generate and less restricted format. The binary format on the other hand has a strict
order requirement on the literals not only for inputs and latches, but also for the RHS
literals with respect to the LHS literals. The binary format does not require such an
explicit check. The AIGER library and all the tools including aignm and aigtoaig,
which read AIGs in AIGER format with the AIGER library, can be used to validate
AIGER files in ASCII or binary format.

Finally note, that in the ASCII format the number of defined literals does not have to
match the maximal variable index M. In essence, some literals may just not be used in
ASCII format.

6 Symbols

After the definitions of the AND gates an optional symbol table may follow. A symbol
is an arbitrary ASCII string of printable characters excluding the new line character.
Symbols can only be attached to inputs, latches and outputs and there is at most one
symbol per input, latch or output allowed. A symbol entry makes up one line in the
input and consists of a symbol type specifier which is either i, l, or o on the first
character position, followed by a position, which is not separated by a space. After a
space character the symbol name starts and continues until but not including the next
new line character. Therefore a symbol table entry looks as follows:

[ilo]<pos> <string>

The position pos of the symbol denotes the position of the input, latch, or output, in
the list of inputs, latches, and outputs respectively. It has to follow immediately the
symbol type identifier without space.

The symbol table is put after all the definitions, such that an application reading an
AIG can just stop reading the file after it has read the definitions. The same applies to

The AIGER And-Inverter Graph (AIG) Format Version 20070427 8

comments which come last.

7 Comments

After the symbol table an optional comment section may start. The comment section
starts with a c character followed by a new line. The following lines are comments.
Each comment starts at the first character of a line and extends until the next new
line character. There can be no comment lines at all, but the last comment has to be
terminated by a new line character, which then also has to be the last character of the
file.

8 Binary Format Motivation

The binary format is more restricted than the ASCII format. Literals have to follow a
specific order. The order restrictions and using a two-complement binary representa-
tion of numbers makes the binary format not only easier to read but also much more
compact. Experiments show that these restrictions and an additional delta encoding
result in smaller uncompressed files. The binary format is often smaller than the same
model in GZIP compressed ASCII format. Without symbol tables the reduction is typ-
ically a factor of two compared to the GZIP compressed ASCII format. Compressing
the binary format results in additional reduction.

As example consider the following SMV model texas.parsesys^1.E.smv, the
largest benchmark from the TIP suite:

1204637 unmangled.smv
485595 mangled.smv
191045 unstripped.aag
185098 stripped.aag
114796 unmangled.smv.gz
97455 mangled.smv.gz
72486 unstripped.aag.gz
70693 stripped.aag.gz
44044 unstripped.aig
38097 stripped.aig
28061 unstripped.aig.gz
26226 stripped.aig.gz

After flattening and binary encoding, the SMV model has a size of 1204637 bytes (un-
mangled.smv). Simply renaming the symbols, e.g. mangling them, results in a reduc-
tion in file size of almost a factor of 3. At least another factor of two can be obtained by
translating the original unmangled SMV file into an AIG and writing it in the ASCII
format (unstripped.aag) with our tool smvtoaig. This file still contains all the un-
mangled symbols. Stripping the symbol table reduces the size slightly (stripped.aag).

The AIGER And-Inverter Graph (AIG) Format Version 20070427 9

Compressing these four files with GZIP results in another reduction of at least 2. In
particular note, that the uncompressed and unstripped binary format is two third the
size of the compressed and stripped ASCII format. Finally using the binary format,
gives almost an additional factor of two. Compressing the binary format gives further
reduction.

For the whole TIP suite the sizes are as follows

4393611 unmangled.tar.gz
3099882 mangled.tar.gz
2676172 aigtosmv.tar.gz
2303631 aag.tar.gz
347325 aig.tar.gz

Here we stripped the symbols in the AIG case. The tar file aigtosmv.tar.gz con-
tains the result of translating the files from binary format (tip/aig.tar.gz) back into
SMV format. It is also remarkable, that with the exception of the binary format, GZIP
can not make use of the fact that most of the models in the TIP suite occur multiple
times though with different properties.

Finally, as a combinational example consider the CNF benchmark f10bidw submit-
ted by P. Manolios and S. K. Srinivasan to the SAT Race 2006 with 800k variables
and roughly 2.4 million clauses. Since the original benchmark consists of only AND
gates and one unit clause, we could easily extract a corresponding AIG with our tool
cnf2aig.

55125988 f10bidw.cnf
17728435 f10bidw.aag
11743646 f10bidw.cnf.gz
5827259 f10bidw.aag.gz
2904681 f10bidw.aig
1931015 f10bidw.aig.gz

These experiments show that using a binary format can considerably reduce space
requirements for storing benchmarks. This reduction is even more important if the
AIGER format is used for large combinational benchmarks, e.g. in a SAT context as in
the last example.

9 Binary Format Definition

The binary format is semantically a subset of the ASCII format with a slightly different
syntax. The binary format may need to reencode literals, but translating a file in binary
format into ASCII format and then back in to binary format will result in the same file.

The main differences of the binary format to the ASCII format are as follows. After
the header the list of input literals and all the current state literals of a latch can be

The AIGER And-Inverter Graph (AIG) Format Version 20070427 10

omitted. Furthermore the definitions of the AND gates are binary encoded. However,
the symbol table and the comment section are as in the ASCII format.

The header of an AIGER file in binary format has aig as format identifier, but other-
wise is identical to the ASCII header. The standard file extension for the binary format
is therefore .aig.

A header for the binary format is still in ASCII encoding:

aig M I L O A

Constants, variables and literals are handled in the same way as in the ASCII format.
The first simplifying restriction is on the variable indices of inputs and latches. The
variable indices of inputs come first, followed by the pseudo-primary inputs of the
latches and then the variable indices of all LHS of AND gates:

input variable indices 1, 2, ... , I
latch variable indices I+1, I+2, ... , (I+L)
AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M

The corresponding unsigned literals are

input literals 2, 4, ... , 2*I
latch literals 2*I+2, 2*I+4, ... , 2*(I+L)
AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M

All literals have to be defined, and therefore M = I + L + A. With this restriction it
becomes possible that the inputs and the current state literals of the latches do not have
to be listed explicitly. Therefore, after the header only the list of L next state literals
follows, one per latch on a single line, and then the O outputs, again one per line.

In the binary format we assume that the AND gates are ordered and respect the child
parent relation. AND gates with smaller literals on the LHS come first. Therefore we
can assume that the literals on the right-hand side of a definition of an AND gate are
smaller than the LHS literal. Furthermore we can sort the literals on the RHS, such that
the larger literal comes first. A definition thus consists of three literals

lhs rhs0 rhs1

with lhs even and lhs > rhs0 >= rhs1. Also the variable indices are pairwise
different to avoid combinational self loops. Since the LHS indices of the definitions
are all consecutive (as even integers), the binary format does not have to keep lhs. In
addition, we can use the order restriction and only write the differences delta0 and
delta1 instead of rhs0 and rhs1, with

delta0 = lhs - rhs0, delta1 = rhs0 - rhs1

The AIGER And-Inverter Graph (AIG) Format Version 20070427 11

The differences will all be strictly positive, and in practice often very small. We can
take advantage of this fact by the simple little-endian encoding of unsigned integers of
the next section. After the binary delta encoding of the RHSs of all AND gates, the
optional symbol table and optional comment section start in the same format as in the
ASCII case.

10 Binary Encoding of Deltas

Assume that w0, ..., wi are 7-bit words, w1 to wi all non zero and the unsigned
number x can be represented as

x = w0 + 2^7*w1 + 2^14*w2 + 2^(7*i)*wi

The binary encoding of x in AIGER is the sequence of i bytes b0, ... bi:

1w0, 1w1, 1w2, ..., 0wi

The MSB of a byte in this sequence signals whether this byte is the last byte in the
sequence, or whether there are still more bytes to follow. Here are some examples:

unsigned integer byte sequence of encoding (in hexadecimal)

x b0 b1 b2 b3

0 00
1 01

2^7-1 = 127 7f
2^7 = 128 80 01
2^8 + 2 = 258 82 02
2^14 - 1 = 16383 ff 7f
2^14 + 3 = 16387 83 80 01
2^28 - 1 ff ff ff 7f
2^28 + 7 87 80 80 80 01

This encoding can reduce the number of bytes by at most a factor of 4, which very
often in practice is almost reached, in particular in our application where many small
numbers are expected.

This binary encoding of arbitrary precision unsigned integers is platform-independent
and thus 64-bit clean. Unfortunately, this is not true for the following code snippets
in C. We also just ignore overflows and file errors, but otherwise this code shows that
encoding and decoding is very simple.

The AIGER And-Inverter Graph (AIG) Format Version 20070427 12

unsigned char
getnoneofch (FILE * file)
{

int ch = getc (file);
if (ch != EOF)
return ch;

fprintf (stderr, "*** decode: unexpected EOF\n");
exit (1);

}

unsigned
decode (FILE * file)
{

unsigned x = 0, i = 0;
unsigned char ch;

while ((ch = getnoneofch (file)) & 0x80)
x |= (ch & 0x7f) << (7 * i++);

return x | (ch << (7 * i));
}

void
encode (FILE * file, unsigned x)
{

unsigned char ch;

while (x & ~0x7f)
{

ch = (x & 0x7f) | 0x80;
putc (ch, file);
x >>= 7;

}

ch = x;
putc (ch, file);

}

Not checking that the next character is an EOF may result in an infinite loop. In the
binary format of AIGER we always expect a complete sequence. Therefore if an EOF
is read before the sequence is complete a parse error occurs. A simple solution to this
problem is to check the return value of getc. If the value is EOF then abort decoding
with a parse error.

The AIGER And-Inverter Graph (AIG) Format Version 20070427 13

11 Property Checking

The AIGER format can easily be used for various types of property checking. A com-
binational circuit with no latches, i.e., L = 0, and exactly one output can be assumed
to be a circuit for which we want to force the output to be one. This is an encoding of
SAT.

For sequential circuits model checking of simple safety properties is encoded in the
same way. To check liveness we interpret each of the outputs as fairness constraint. An
algorithm that finds a reachable fair cycle for these fairness constraints allows to model
check LTL properties.

In addition we plan to support PSL properties in the following way. PSL properties are
written in a separate file. As atomic properties only outputs of the circuit are allowed.
The outputs are referenced through a mandatory symbolic name in the symbol table.

12 Vectors, Stimuli, Traces, Solutions and Witnesses

In this section we define the semantics and syntax of traces and solutions to property
checking problems. More specifically we only consider structural SAT solving and bad
state detection witnesses.

In essence, a valid solution is a list of input vectors. An input vector may contain
beside 0 and 1 also x values. Such a list of input vectors is a valid witness iff for
any instantiation of the x values by 0 or 1 two-valued simulation will produce at least
one 1 at the output of the AIG, assuming that the AIG starts in its initial all 0 state.
For structural SAT problems, the AIG does not contain latches. In this case one input
vector is enough.

In principle one can use three valued logic for fast simulation of AIGs under partial
two-valued input assignments. Beside two-valued logic constants 0 and 1, we also use
the logic constant x. Operations in this three-valued logic are as usual:

a | !a & | 0 1 x
--+--- --+------
0 | 1 0 | 0 0 0
1 | 0 1 | 0 1 x
x | x x | 0 x x

A vector of values or short vector of size n is a list of n three-valued constants. A vector
of size n is represented by an ASCII string of length n containing only the characters
0, 1, and x.

In the following fix an AIG in AIGER format of type M I L O A. An input vector is a
vector of size I, an output vector is a vector of size O, and a state vector is a vector of
size L.

A stimulus for an AIG in AIGER format is a list of input vectors. The file format for

The AIGER And-Inverter Graph (AIG) Format Version 20070427 14

a stimulus consists of lines of ASCII strings that represent the input vectors separated
and terminated by exactly one new line character.

A transition contains, in this order, a current state, input, output, and next state vector.
A transition is consistent with the logic of the given AIG if the result of simulating the
current state vector under the input vector in three-valued logic produces the given out-
put and next state. In the ASCII representation of a transition, the strings representing
the four vectors are separated by space characters, exactly one space character between
two strings. This implies that a transition for a combinational circuit with L = 0 starts
and ends with one space character. A combinational circuit without any input would
even have two leading space characters.

A trace consists of a list of transitions. A trace is consistent if all its transitions are
consistent, and the current state vector of all transitions except the first has the same
value as the next state vector of its previous transition. A trace is initialized if the
current state vector of the first transition only contains 0. Each line of a trace file consist
of exactly one transition. Again we use exactly one new line character to separate and
terminate the list of lines.

Note that we only consider ’cycle accurate simulation’ here. Furthermore the defini-
tions also make sense for combinational circuits with L = 0. In this case, the state
vectors will just be vectors of length 0 and represented by empty strings.

A simulator thus takes as input an AIG and a stimulus matching the type of the AIG
and produces an initialized and consistent trace. A randomized simulator will use
randomized input vectors and does not need a stimulus.

The x value should not be interpreted as don’t care. For instance, if the literal l is
assigned to the value x, then l & !l produces x in three-valued simulation and not 0.
This standard semantic of three-valued logic allows linear time simulation of a circuit
under a total three-valued assignment to the inputs. Simulating partial assignments in
two-valued logic, more specifically checking whether an output is forced to a certain
value, is an NP complete problem. On the other hand three-value simulation is purely
syntactic. For instance, optimizing an AIG does not need to preserve three-valued
simulation semantics.

Because of this syntactic nature of three-valued simulation we define the concept of
a grounded stimulus, which does not contain x values. A stimulus is an instance of
another stimulus if the former is identical to the latter, except where the latter has x
values. Instead of x the former can have any of the three values (0, 1, or x).

A witness that a bad state can be reached and also a solution to a structural SAT prob-
lem is in both cases just a not necessarily grounded stimulus for which any grounded
instance produces through simulation a trace in which the output vector of at least one
transition contains 1. This simulation is of course over two-valued logic. The whole
discussion on three-valued logic and simulation is only included here to explain that
even though that x can be used in a stimulus, we do not actually use three-valued se-
mantics in the definition of a witness. In the context of ATPG, or where reset states
are unknown (which would differ from AIG semantics), these definitions using three-
valued semantics are still useful.

The AIGER And-Inverter Graph (AIG) Format Version 20070427 15

In order to distinguish successful from failing model checking respectively SAT solver
runs we define the concept of solutions. A solution file may contain a result line and
an optional stimulus part. The result line either is made up of the single character 0
to denote that the solver proved that the output of the AIG can never become one or
1 which means that the solver produced a witness that at least one output can become
one starting from the initial state. Invalid result lines or empty files are interpreted as
unknown. If the result is 1 then the rest of the file should contain a witness as defined
in the previous paragraph.

The definition of a witness for the existence of a fair cycle is not covered yet.

13 Proposal for Future Extensions

The most important extension of the format is to include word level operators, which
would also allow to capture even hierarchical RTL models and more general con-
straints. One simple way to achieve this is to add new operators through an escape
mechanism.

The current proposal simply allows more general gates. These definitions are placed
where ANDs are usually defined. To start the definition of a more general operator we
use the literal 0 as escape sequence in the ASCII format and the zero byte in the binary
format. The escape sequence is followed by a non negative number which denotes
the type of the operator and its arguments. The arguments are partitioned into three
sequences, the parameters, inputs and outputs. Each list starts with the number of
elements.

The parameters are simply unsigned numbers and should not contain literals. The
inputs are signed literals, the outputs define new literals.

We suggest to have the following predefined types:

The AIGER And-Inverter Graph (AIG) Format Version 20070427 16

type operator arguments
0 quantifier 1 omega 2 lit body 1 out

omega=1->universal, omega=0->existential
1 generic circuit k p1..pk n i1..in m o1..om
2 adder 0 2*n+1 cin x1..xn n+1 y1..yn s1..sn cout
3 cmp 1 p 2*n x1..xn y1..yn 1 o

p=0->op=le, p=1->op=lt, p=2->op=ge, p=3->op=gt
4 mux 1 n

n+2*n*w (n-bit selector, 2^n w-bit words input)
w (one w-bit output)
selector word starts with LSB
1st word is selected by the all zero selector

5 cardinality
constraint

2 p k n x1 ... xn
p=0->op=le, p=1->op=lt, p=2->op=ge, p=3->op=gt
x1+..+xn op k

6 all different
constraint

1 w n*w (n w-bit words) 1 o

More arithmetic operators will be necessary and the actual type encoding numbers may
change as well. Please note that these future extensions are just a proposal and currently
not supported at all. However, comments are very much welcome.

14 Related Work

AIGs and similar data structures have been around for a while. AIGs are described in
[4,5], RBCs in [1] and BEDs in [2]. Recently AIG based algorithms have been used
very successfully as alternative to classical synthesis algorithms in [6] using ideas from
[3]. The former paper also contains additional references not listed here.

[1] P. Abdulla, P. Bjesse, and N. Een. Symbolic reachability analysis based on SAT-
solvers. In Proc. TACAS’00.

[2] H. Andersen and H. Hulgaard. Boolean expression diagrams. In Proc. LICS’97.

[3] P. Bjesse and A. Boralv. DAG-Aware Circuit Compression For Formal Verifica-
tion. In Proc. ICCAD’04.

[4] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Trans. on
CAD, 21(12), 2002.

[5] A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-based Boolean Reasoning. In
Proc. DAC’01.

[6] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-Aware AIG Rewriting - A
Fresh Look at Combinational Logic Synthesis. In Proc. DAC’06.

	Introduction
	Design Choices
	Header
	Variables and Literals
	ASCII Format
	Symbols
	Comments
	Binary Format Motivation
	Binary Format Definition
	Binary Encoding of Deltas
	Property Checking
	Vectors, Stimuli, Traces, Solutions and Witnesses
	Proposal for Future Extensions
	Related Work

