
An Integer Linear Programming Based Approach to Simultaneous Memory
Space Partitioning and Data Allocation for Chip Multiprocessors∗

O. Ozturk, G. Chen, M. Kandemir
Computer Science and Engineering Department

Pennsylvania State University
University Park, PA 16802, USA

{ozturk, gchen, kandemir}@cse.psu.edu

M. Karakoy
Department of Computing

Imperial College
London, SW 2AZ, UK
m.karakoy@ic.ac.uk

Abstract

The trends in advanced integrated circuit technologies require
us to look for new ways to utilize large numbers of gates and re-
duce the effects of high interconnect delays. One promising re-
search direction is chip multiprocessors that integrate multiple
processors on the same die. Among the components of a chip
multiprocessor, its memory subsystem is maybe the most critical
one, since it shapes both power and performance characteris-
tics of the resulting design. Motivated by this observation, this
paper addresses the problem of decomposing (partitioning) on-
chip memory space across parallel processors and allocating data
across memory components in an integrated manner. In the most
general case, the resulting memory architecture is a hybrid one,
where some memory components are accessed privately, whereas
the others are shared by two or more processors. The proposed
approach for achieving this has two complementary components:
an optimizing compiler and an ILP (integer linear programming)
solver. The role of the compiler in this approach is to analyze
the application code and detect the interprocessor data sharing
patterns, given the loop parallelization information. The job of
the ILP solver, on the other hand, is to determine the sizes of the
on-chip memory components, how these memory components are
shared across multiple processors in the system, and what data
each component holds. In other words, we address the problem of
integrated memory space partitioning and data allocation for chip
multiprocessors.

1 Introduction

A chip multiprocessor integrates multiple processors on
the same die. Recent research [18, 11, 13, 14, 19] dis-
cusses several advantages of these architectures over com-
plex single-processor based designs. These advantages in-
clude capability of exploiting both high level (loop/thread
level) and low level (instruction level) parallelism, better
performance and power consumption profiles, and easier
verification. In particular, it has been reported [17] that,
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on applications with high-level parallelism (e.g., embedded
multimedia codes that make frequent use of large arrays), a
chip multiprocessor can perform better than a wide super-
scalar architecture.

A critical component of a chip multiprocessor is its
memory subsystem. This is because both power and perfor-
mance behavior of a chip multiprocessor is largely shaped
by its on-chip memory [6, 16]. While it is possible to
employ conventional memory designs such as pure private
memory or pure shared memory, such designs are very gen-
eral and rigid, and may not generate the best behavior for a
given embedded application. Our belief is that, for embed-
ded systems that repeatedly execute the same application,
it makes sense to design a customized, software-managed
on-chip memory architecture. Such a memory architecture
should be a hybrid one that contains both private and shared
components. Figure 1 depicts the high-level views of pure
private, pure shared, and sample hybrid memory architec-
tures. Note that, in the hybrid architecture case, while some
processors have private memories, others do not have one.
Similarly, the different processor groups can share memory
in different fashions. For example, a memory component
can be shared by two processors, whereas another compo-
nent can be shared by three processors.

Designing such a customized hybrid memory architec-
ture is not trivial because of at least three main reasons.
First, since the memory architecture to be designed changes
from one application to another, a hand-waived approach
is not suitable, as it can be extremely time consuming and
error-prone to go through the same complex process each
time we want to design a memory system for a new applica-
tion. Therefore, we need an automated strategy that comes
up with the most suitable design for a given application.
Second, the design of such a memory needs to be guided
by a tool that can extract the data sharing exhibited by the
application at hand. After all, in order to decide how the
different memory components need to be shared by parallel
processors, one needs to capture the data sharing patterns
across the processors. Third, data allocation in a hybrid
memory system is not a trivial problem, and should be car-
ried out along with data partitioning if we want obtain the
best results.
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In this paper, we propose a strategy for designing
application-specific on-chip hybrid memories for chip mul-
tiprocessors that employs both an optimizing compiler and
an ILP (integer linear programming) solver (see Figure 2).
The role of the compiler in this approach is to analyze the
application code and detect the data sharing patterns across
processors, given the loop parallelization information. The
job of the ILP solver, on the other hand, is to determine
the sizes of the memory components, how these memory
components are shared across multiple processors in the
system, and what data each memory component is to hold.
Note that, the ILP based solution can be used not only for
designing hybrid memories, but also as an upper bound
against which future heuristic solutions can be compared.
Our focus is on array-based application codes that occur
frequently in embedded image/video processing. It needs
also be noted that, our approach can be targeted at differ-
ent objectives such as maximizing performance, reducing
power/energy consumption, and minimizing the memory
space occupied.

The rest of this paper is organized as follows. Sec-
tion 2 presents the compiler analysis necessary to identify
and characterize the data sharings across parallel proces-
sors. Section 3 gives the details of our ILP formulation.
Section 4 gives an example. Section 5 concludes the paper
with a summary.

2 Compiler Analysis for Identifying Shared
and Privately-Accessed Data

As mentioned earlier, our ILP solver takes as input the
data accessed by each processor and the data shared by pro-
cessor groups. While there are several ways of obtaining
this data (e.g., through simulation or static analysis of the
application code), in this work we employ a compiler-based
approach. More specifically, the compiler analyzes the ap-
plication source code and extracts the interprocessor data
sharing information. To achieve this, the proposed com-
piler support employs a polyhedral tool called the Omega
Library [10]. Basically, the Omega Library provides several
functions that operate on Presburger formulas. Presburger
formulas are a class of logical formulas which can be built
from affine constraints over integer variables, the logical
connectives (∨, ∧, and ¬), and the existential and univer-
sal quantifiers (∃ and ∀). The Omega Library manipulates
integer tuple relations and sets, which are described using
Presburger formulas. Specifically, the conditions describing
a set or tuple can be described by a Presburger formula. Re-
lations and sets can be combined using functions (operators)
such as composition, intersection, union, and difference.

In our work, we express the set of elements accessed by
processors and the set of elements shared among processors
using Presburger formulas. As an example, consider the
nested loop depicted in Figure 3. The iteration space of
this loop nest (i.e., the set of iteration points that will be
executed by the nest) can be expressed using the following
Presburger formula:

J = {(j1, j2) | L1 ≤ j1 ≤ U1 ∧ L2 ≤ j2 ≤ U2}.

However, when the loop nest is parallelized1, each proces-
sor typically executes a subset of the iteration points in the
nest. In the loop nest shown above, assuming that the outer
loop (j1) is parallelized across P processors, the pth pro-
cessor (0 ≤ p < P ) is assigned the iterations captured by
the following Presburger set:

J (p) = {(j1, j2) | (L1 + p(U1 − L1 + 1)/P ≤ j1

< L1 + (p + 1)(U1 − L1 + 1)/P ) ∧ (L2 ≤ j2 ≤ U2)}.
Note that,

J =
⋃

p∈{P}
J (p),

where
⋃

denotes the set union operator and {P} represents
the set of processors in the system. Note also that, we as-
sumed, for simplicity, (U1 − L1 + 1) is evenly divided by
P .

The set of array elements accessed by processor p (based
on this parallelization) can be calculated as the union of the
set of elements accessed by each reference within the loop
nest. In mathematical terms, for our example nest in Fig-
ure 3, we have:

D(p, X) = D(p, X[j1, j1 + j2]) ∪ D(p, X[j2 − 1, j1 + 3])

∪ D(p, X[j2 + 2, j2 + j1]),

where

D(p, X[j1, j1 + j2]) = {(d1, d2) | ∃(j1, j2) such that

(d1 = j1 ∧ d2 = j1 + j2) ∧ (j1, j2) ∈ J (p)}
D(p, X[j2 − 1, j1 + 3]) = {(d1, d2) | ∃(j1, j2) such that

(d1 = j2 − 1 ∧ d2 = j1 + 3) ∧ (j1, j2) ∈ J (p)}
D(p, X[j2 + 2, j2 + j1]) = {(d1, d2) | ∃(j1, j2) such that

(d1 = j2 + 2 ∧ d2 = j2 + j1) ∧ (j1, j2) ∈ J (p)}.
We can also express the array elements shared among a

set of processors using the set intersection operator. For
example, let {P ′} be a subset of {P}, i.e., {P ′} ⊆ {P}.
For our example, the set of data elements shared by all the
processors in {P ′} can be expressed as:

S({P ′}, X) =
⋂

p∈{P ′}
D(p, X).

As will be discussed later in detail, the set of elements
shared among processors helps us determine the sizes of the
on-chip memory components shared among processors. To
determine the size of the on-chip private memories, on the
other hand, we need the set of array elements accessed ex-
clusively by processor p. This can be expressed as follows:

E(p, X) = D(p, X) \
⋃

[p∈{P ′}]∧[{p}�={P ′}]
S({P ′}, X),

where \ denotes the set subtraction (set difference) opera-
tor. In informal terms, what this last expression says that an

1In this paper, we do not assume a specific loop parallelization strategy.
A loop nest can be parallelized either through user-specified annotations or
via automatic compiler analysis.
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(a) (b) (c)
Figure 1. (a) Pure private memory. (b) Pure shared memory. (c) Hybrid memory. Although not shown
for clarity, in (a) and (c) there is an on-chip interconnect to allow a processor access a data item which
resides in a memory that is not directly accessible by that processor.

array element belongs to the set E(p, X) if and only if this
item is not accessed by any processor other than p.

An important point to note here is that, while the analysis
above is given in terms of a single nest accessing a single
array, it is straightforward to extend it to multiple nest and
multiple array cases. For example, if a loop nest accesses
q different arrays, namely, X0, X1, ..., Xq−1, the total set
of elements accessed by processor p can be computed as:
D(p) = D(p, X0)∪D(p, X1)∪ ...∪D(p, Xq−1). The other
sets can be computed in a similar fashion. A similar exten-
sion can be written for the multiple nest case as well.

Capturing only the array elements shared or privately ac-
cessed by the processors is sufficient to perform memory
partitioning, but not sufficient for data allocation across the
memory components. This is because it may be necessary
in many cases to store a data item in a memory location that
belongs to a component that is not shared by a processor
that accesses that element. In such a case, we consume en-
ergy in both memory access and extra interconnect access
if the processor in question wants to access that item. To
decide which data needs to be stored remotely and which
data locally, we need a mechanism to rank the different data
items based on their importances (criticalities). For exam-
ple, from the viewpoint of processor p, not all the data items
in S({p, p′}, X), the set of shared elements between pro-
cessors p and p′, have the same importance; some of them
can be more important than the others. In this work, we use
the number of accesses as the metric using which we can
rank the different data items. While a polyhedral analysis,
similar to the one conducted above, can be used for cap-
turing the number of accesses to each individual data item,
the associated overheads can be too much to tolerate. In-
stead, we calculate the number of accesses at a set (of data
items) granularity. As an example, for the loop nest dis-
cussed above, we compute the number of accesses to the
elements in sets E(p, X) and S({P ′}, X), for all p ∈ {P}
and for all {P ′} ⊆ {P}. Note that, we can use polyhedral
arithmetic to achieve this. For example, the loop iterations
that access the elements in S({P ′}, X) can be captured as:

J ({P ′}, X) = {(j1, j2) | ∃(d1, d2) such that

(j1, j2) ∈ J (p) ∧ ((d1 = j1 ∧ d2 = j1 + j2) ∨
(d1 = j2 − 1 ∧ d2 = j1 + 3) ∨ (d1 = j2 + 2 ∧
d2 = j2 + j1)) ∧
(∀p ∈ {P ′} : (d1, d2) ∈ D(p, X))}.

One can similarly compute a set J (p, X), the set of loop
iterations that access the elements in E(p, X). An impor-

Figure 2. High-level view of our approach.

for(j1 = L1; j1 ≤ U1; j1 + +)
for(j2 = L2; j2 ≤ U2; j2 + +)
· · · = X[j1, j1 + j2] + X[j2 − 1, j1 + 3] + X[j2 + 2, j2 + j1];

Figure 3. An example loop nest.

tant issue that needs to be clarified at this point is how one
can enumerate and count the elements in the Presburger sets
defined above, i.e., in sets such as E(p, X), S({P ′}, X),
J (p, X), and J ({P ′}, X). This is important since our ILP
solver needs the number of elements in these sets, not the
sets themselves. We address this problem using the ”code-
gen” utility provided by the Omega Library. Codegen gen-
erates code to traverse the points in a given Presburger set in
lexicographical order. After generating this code, what we
do is to insert a counter variable in the code that keeps track
of the number of points in the code, and execute the result-
ing code at compile time. The final value of the counter
variable at the end of this execution gives us the number we
want to determine (i.e., the number of elements in the set).
A similar approach has been employed for an entirely dif-
ferent problem in [7]. It is to be noted that, the elements in
the sets discussed above can be counted using other exist-
ing methods as well such as [5] and [1], among the others.
In the rest of this paper, we use |E(p)| and |S({P ′})| to
denote, respectively, the set of privately accessed elements
by processor p and the set elements shared by processors
in {P ′}. Similarly, |J (p, X)| and |J ({P ′}, X)| give the
number of elements in sets J (p, X) and J ({P ′}, X), re-
spectively.

3 ILP Formulation

In this paper, 0-1 ILP is used to determine the sizes of
the memory components and how they are shared across
multiple processors in the system. Table 1 gives the con-
stant terms used in our ILP formulation. Note that, the sizes
given in this table and used in the following discussion are
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Constant Definition
P Number of processors
L Total memory size in terms of slices
D Maximum possible number of data sets (D = 2P − 1)
EComm Communication energy for a non-local data access
Eport,s Energy consumed by accessing a memory component with port

number of ports and of size s
Fp,d Frequency of accesses to data set d by processor p
Sd Size of data set d
Localm,p Indicates whether memory component m is directly accessible by p
ports(m) Number of ports that memory component m has

Table 1. The constant terms used in our ILP for-
mulation. These are either architecture specific or
program specific.

in terms of units (slices), which represents the minimum
amount of space that can be allocated to a memory compo-
nent (i.e., the unit of allocation).

Our objective is to partition the available on-chip mem-
ory space into memory components that can be shared
among different processors or privately accessed by a pro-
cessor and perform data allocation across these memory
components to minimize the overall energy consumption.
We determine the existence and sizes of memory compo-
nents based on the data access frequency of the processors
and the sizes of the data sets using 0-1 variables. For each
possible memory component size, we define 0-1 variables.
The sizes of memory components are restricted by the total
data size. There are possibly 2P − 1 memory components
on the chip multiprocessor, where P is the number of pro-
cessors. For example, if there are two processors (p0 and
p1), possible memory components can be a private memory
for p0, a private memory for p1, and a shared memory that
can be accessed by p0 and p1. Therefore, the available on-
chip memory space can potentially be partitioned into these
three (22−1) memory components in an energy minimizing
fashion. Note that, it is possible, in the final design (mem-
ory partitioning), to have one of these memory components
alone, or only two of them, or all of them together. That
is, the final on-chip memory space partitioning determined
by our approach can contain any subset of these three com-
ponents. Similarly, there are possibly D = 2P − 1 data
sets. The size of a data set, denoted by Sd in Table 1, is
determined by the number of elements in the data set. For
example, if we have three processors (denoted p0, p1, and
p2), we have: S1 = |E(p0)|, S2 = |E(p1)|, S3 = |E(p2)|, S4

= |S(p0, p1)|, S5 = |S(p0, p2)|, S6 = |S(p1, p2)|, and S7 =
|S(p0, p1, p2)|. Similarly, the access frequency of a proces-
sor p to a data set d, denoted by Fp,d in Table 1, is obtained
from |J (p, X)| and |J ({P ′}, X)| defined earlier.

We can use 0-1 variables to specify the size (size) of a
memory component. Specifically, we have:

• sizem,s : indicates whether memory component m is
of size s.

We use a variable for each one of the possible sizes. If this
0-1 variable is 1, this indicates that the corresponding mem-
ory component size is s. If this size is 0, then we conclude
that this memory component does not exist.

We use another 0-1 variable for assigning each data set
to memory component(s):

• mapd,ds,m,ms : indicates whether data set d of size ds

is located in memory component m of size ms.

Note that, we allow a data set to be divided among the dif-
ferent memory components. If we were to restrict a data
set to be located only in one memory component, removing
the second parameter in the subscript above (ds), would be
sufficient.

If a data set (ds) does not reside in one of the memory
components that is directly accessible by the processor, then
accessing that data set would incur an extra on-chip commu-
nication energy due to accessing the interconnect. To cap-
ture the communication energy, we use commp,d,ds,m,ms :

• commp,d,ds,m,ms : indicates whether accessing the
data set d of size ds located in memory component m
of size ms by processor p would require communica-
tion cost.

Each processor’s (p) energy consumption due to accesses
to data sets can be identified using a variable Ap which is
defined as follows:

• Ap : the energy consumed by processor p due to data
accesses.

Also, the energy consumption due to interconnect ac-
cesses is captured by the Cp,m variable.

• Cp,m : the energy consumed by processor p due to
communication to access data in memory component
m.

It should be noted that, access energy Ap and communica-
tion energy Cp,m are not 0-1 variables. They are simply
used to calculate the total energy consumption. After defin-
ing the variables in our ILP formulation, now we explain
the necessary constraints.

The total memory space (L) should be equal to the sum
of the sizes of the individual memory components. This can
be captured as:

L =

2P −1∑

i=1

L∑

j=0

sizei,j × j (1)

In this expression, index variable i iterates over the 2P − 1
memory components. On the other hand, index variable j
iterates over the possible sizes from 0 up to L.

A memory component can have one and only one size.
We capture this constraint as follows:

L∑

j=0

sizem,j = 1, ∀m. (2)

A data set (d) can be divided among memory components:

Sd∑

j=0

2P −1∑

k=1

L∑

l=0

mapd,j,k,l × j = Sd, j ≤ l, ∀d. (3)

In the above formulation, index variable j iterates over the
possible data set sizes from 0 up to Sd (the data set size). On
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the other hand, k iterates over the memory components, and
similarly, l is used to identify the size of the corresponding
memory component. The sum of these data set portions
should be equal to the total data set size (Sd).

A data set (d) can at most have one size allocated within a
memory component (m). Although this constraint does not
affect the result of the ILP, it prevents having two separate
space assignments for the same data set within a memory
component. For example, instead of two memory spaces
with sizes s1 and s2, with this constraint the ILP solution
will result in a single memory space of s1 + s2 within the
same memory component.

Sd∑

j=0

mapd,j,m,l ≤ 1, j ≤ l, ∀d, m,ms. (4)

If a memory component is used by a data set, this memory
component has to exist, which can be captured by:

sizem,ms ≥ mapd,ds,m,ms , ds ≤ ms, ∀d, ds, m, ms. (5)

The total data size stored in a memory component must be
less than or equal to the size of the memory component it-
self:

D∑

i=1

Sd∑

j=0

mapi,j,m,ms × j ≤ ms, ∀m, ms. (6)

In this formulation, i iterates over the data sets, whereas, j
iterates over the possible data set sizes.

A communication cost will be incurred, if the data is
mapped to a memory component (m) and the memory com-
ponent is not local to the processor (p) accessing it (i.e., it is
not one of the components to which p has a direct access).
As explained earlier, we use commp,d,ds,m,ms to denote a
0-1 variable that captures the existence of communication.
We have:

commp,d,ds,m,ms ≥ mapd,ds,m,ms − Localm,p,

ds ≤ ms,∀p, d, ds, m,ms.

In the above expression, Localm,p is a parameter given to
the ILP solver based on the memory component in question.
For example, if there are two processors (p0 and p1), the
possible memory components can be m0 (a private memory
for p0), m1 (a private memory for p1), and m2 (a shared
memory between p0 and p1). For m0, this parameter will
be given as 0 for p1. Similarly, for m1, it will be set to 0 for
p0. On the other hand, for m2, it will be set to 1 for both
processors.

Having specified the necessary constraints in our ILP
formulation, we next give our objective function. In our ex-
ecution model, there are two components of the total mem-
ory energy consumption:

• access: the energy consumed when a memory compo-
nent is accessed.

• communication: the extra interconnect energy con-
sumed when a remote memory component is accessed.

Each processor’s memory access cost, Ap can be formu-
lated as follows:

Ap =

D∑

i=1

Sd∑

j=0

2P −1∑

k=1

L∑

l=0

mapi,j,k,l×Fp,i×j×Eports(k),l j ≤ l, ∀p.

(7)

Data Set Size Proc. 0Proc. 1Proc. 2Proc. 3
D0 2K 10% - - -
D1 1K - 5% - -

D0,1 4K 5% 15% - -
D2,3 3K - - 5% 10%

D0,1,2,3 5K 5% 10% 10% 25%

⇒

Location
M0
M1

M0,1
M2,3

M1,2,3
(a) (b)

Table 2. (a) An example data set with access fre-
quencies. (b) The resulting locations (placement)
for the data sets.

Each processor’s communication cost due to accessing the
interconnect can be formulated using Cp,d:

Cp,d =

Sd∑

j=0

2P −1∑

k=1

L∑

l=0

commp,d,j,k,l×Fp,d×j×EComm, j ≤ l, ∀p, d.

(8)
In the last two expressions, indices i, j, k, and l iterate
over the data sets, data set sizes, memory components,
and memory component sizes, respectively. Fp,i denotes
the frequency of the accesses to data set i by processor
p. Eports(k),l is the unit access energy consumption for a
memory component of a size l with ports(k) number of
ports. ports(k), the number of ports required for the mem-
ory component, is obtained based on the number of proces-
sors accessing it (k). The unit communication energy for a
remote access is EComm. Using these two cost expressions
(Ap and Cp,d), we can express the total energy consumption
due to memory accesses (E) as follows:

E =

P∑

i=1

Ai +

P∑

i=1

D∑

j=1

Ci,j. (9)

Based on this formulation, our 0-1 ILP problem can for-
mally be defined as one of “minimizing E under constraints
(1) through (8).”

Let us explain the operation of our software-managed
hybrid memory architecture. There are three scenarios for
the outcome of a memory access (request) in our hybrid
on-chip memory architecture, depending on where the re-
quested item is located:

• Local Hit: When the processor finds the data in one of
the memory components it has direct access to.

• Remote Hit: In this case, the lookup amongst its as-
signed component(s) fails, but the data is found in another
(on-chip) component that is not directly connected to the
processor that issued the memory request.

• On-Chip Miss: In this case, the data is not in any of the
on-chip components, and requires an off-chip access. The
access cost in this case will involve the cost of the off-chip
access.

4 Example

An example data access frequency and data set size in-
formation for a case with 4 processors is given in Table 2(a).
We assume, for the sake of explanation, that the data sets
can exactly fit into the available on-chip memory space
(15K). The processors that share a data set are indicated in
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Figure 4. The hybrid memory.

the subscript of that data set. For example, D0 is a data set
privately accessed by processor p0. Similarly, D2,3 denotes
a data set shared by processors p2 and p3. The second col-
umn of Table 2 gives the size of each data set. The next four
columns indicate the access frequencies (of processors). In
this example, we assume that if a memory component is
private to a processor, it has a single port. If the memory
component is shared by two or three processors, it has two
ports. Finally, if it is shared by more than three processors,
it has three ports.

In Figure 4, the resulting hybrid on-chip memory par-
titioning returned by our approach is shown. Processors p0

and p1 have access to both private and shared memory com-
ponents. In comparison, the other processors have access
to shared components only. The location (memory compo-
nent) of each data set is shown in Table 2(b). As it can be
seen, except for the data set D0,1,2,3, all of the data sets are
in the memory components in accordance with their data
set sharing information. In other words, every processor
is directly connected to the memory from which it needs
data. The only exception is that the memory component that
holds data set D0,1,2,3 is accessed by only three processors
instead of all four. The main reason for this is that, allow-
ing one more processor access to that component would in-
crease the overall energy consumption in this example (we
do not give here explicitly the energy values used in the
example). Overall, except for accesses by processor p0 to
the memory component that hold data set D0,1,2,3, all the
memory accesses are local. This example shows how our
approach comes up with a hybrid on-chip memory architec-
ture.

5 Concluding Remarks

Chip multiprocessors are suitable for executing data-
intensive embedded applications with source-level paral-
lelism. Ensuring that most of data accesses are satisfied
from on-chip memories is a critical problem for chip multi-
processors, as cost of an off-chip access is very high. Par-
ticularly, multiple cores that need to access the off-chip
memory system may contend with each other for the same
buses/pins to get there. While it is possible to structure on-
chip memory space as shared memory or private memory,
each of these has its own drawbacks. An important obser-
vation here is that, to reach minimum energy consumption,
both memory space partitioning and data allocation need
to be optimized in a coordinated manner. In an attempt
to achieve lower power consumption than the conventional

on-chip memory architectures, this paper proposes an ILP-
based strategy that comes up with an application-specific
hybrid memory architecture that has both shared and private
components. Our strategy also determines the optimal data
allocation (placement) for the resulting hybrid memory.
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