
Paper 2.3 INTERNATIONAL TEST CONFERENCE 1
1-4244-4203-0/08/$20.00 ©2008 IEEE

Test Access Mechanism for Multiple Identical Cores

Grady Giles, Jing Wang, Anuja Sehgal, Kedarnath J. Balakrishnan, and James Wingfield
Advanced Micro Devices Austin, USA and Sunnyvale, USA

Abstract
A new test access mechanism (TAM) for multiple iden-

tical embedded cores is proposed. It exploits the identical
nature of the cores and modular pipelined circuitry to
provide scalable and flexible capabilities to make trade-
offs between test time and diagnosis over the manufactur-
ing maturity cycle from low-yield initial production to
high-yield, high-volume production. The test throughput
gains of various configurations of this TAM are analyzed.
Forward and reverse protocol translations for core pat-
terns applied with this TAM are described.

1. Introduction
Modern microprocessor designs have integrated mul-

tiple identical CPU core modules [1], [2], [3], [4]. In such
designs, the multiple instances of the cores often comprise
a large fraction of the total SoC integration. In addition to
the benefits of multiprocessing, such microprocessor archi-
tectures can afford attractive economical options of redun-
dant cores for manufacturing yield enhancement; that is,
the product specification may be for six cores, whereas the
SoC actually has eight cores. With a general embedded
core test methodology such as IEEE Std. 1500 [5], the
cores can be wrapped so that they have no interaction with
outside data sources, and there exists the opportunity to
generate the test for a single core and apply that test to
each of the instances of the core.

Modular SoC testing strategies have been presented in
a variety of previous work. Zorian et. al. [6] introduced a
conceptual architecture for modular testing of SoCs, which
includes three structural elements: test pattern source and
sink, test access mechanism (TAM), and core test wrapper.
Goel et. al. [7] discussed TAM and wrapper architecture
design and optimization. But a significant improvement in
efficiency is accomplished if the test can be applied simul-
taneously to all of the identical cores. It is conceptually
simple to fanout the shared scan input data to the multiple
cores but, given the limited test access, gathering the
unique scan output data of the many cores is more compli-
cated.

The Cell processor [2], the T1 processor [3], and the
Niagara2 processor [4] use dedicated scan inputs and out-
puts for each unique core. This approach enables quick
determination of defective cores but leads to higher test
time since the number of scan flops in each chain will be
higher. The UltraSPARC processor [1], which has two
cores, includes a scan lockstep mode in which the scan
chains in both the cores receive the same scan input data.

The responses scanned out of both the cores are compared
internally and a mismatch between any two bits is reported
by a fail pin. In the AZSCAN architecture [8], multiple
identical processor cores are tested in parallel by broad-
casting the scan data inputs to all of them. The responses
of each of the cores are then compared on-chip with the
expected data, which is also loaded from the tester, identi-
fying bad cores that are then either repaired or turned off.

Our general strategy is to take advantage of the fact
that all of the identical cores should respond identically to
a pattern when they are isolated from interaction with out-
side data sources. This allows us to compare the cores’
output responses to either the expected response or to each
other’s responses using on-chip comparators. Thus, this
TAM with its on-chip comparators, besides being a vehicle
to convey test data to and from the embedded cores, is a
sort of compression scheme as well, since it compacts the
pass/fail information of the cores using only one core’s
output scan channels. Early work of on-chip comparison
was published in 1989 [9].

The objectives and considerations that have guided our
approach include the following:
• Fault detection characteristics of core patterns as com-

prehended by the original core level ATPG must not be
compromised.

• We want our TAM not to be a limiting factor in how
fast scan patterns can be applied to the multiple identic-
al cores. Practically, this implies the use of pipelining
registers.

• Our solution should be scalable. The core may be used
in different SoC’s with different numbers of cores. Ex-
tension of the solution to handle different numbers of
cores should be straightforward.

• The solution should be flexible to accommodate a range
of manufacturing optimization criteria and different
SoC configurations. This flexibility is primarily related
to the trade-off between ease of fault diagnosis and test
throughput.

• Though we expect our core’s test patterns to have some
X data volume, we expect that the masking data volume
is small compared to the total test pattern size. That is,
for our application, we can optimize for sparse X’s.

2. Architecture
Figure 1 is a simplified diagram of one configuration

of the basic pipelined architecture for a toy example of
treatment for three identical cores shown as the three larg-
er rectangles. The small rectangles are pipeline registers
for the various data lanes. The four primary lanes of data
are shown in magenta, green, blue, and red for command,

Paper 2.3 INTERNATIONAL TEST CONFERENCE 2

scan input (SDI), scan output (SDO), and match data re-
spectively. Data flow in the figure is from top and left to
bottom and right. All of the lanes may comprise a plurality
of bits. The comparators (circles) and AND gates comprise
a cascaded output response comparator. With this pipeline
structure, every core receives the same test pattern stimu-
lus in a staggered fashion. Several configurations of this
triplet assembly will be discussed in subsequent sections;
not every configuration uses all of the assembly’s inputs
on the left nor all of its outputs on the right. Clocks for this
structure are not shown, but consider that the TAM circui-
try receives a free-running clock stream (TAM_Clk) of the
same frequency as is appropriate to shift data through the
scan chains of the cores. All of the TAM pipeline registers
are always updating with every cycle of TAM_Clk wheth-
er or not the cores are actually shifting.
Figure 1: Simplified TAM Architecture

Cmd
SDI

SDO

Match

012

Table 1: TAM Commands

Command Operation(s)

Shift
• Shift the core’s scan chains.
• Record any SDO channel miscompares

in the core’s respective error register.
First Pattern

Shift
• Shift the core’s scan chains.
• Reset the core’s error register.

Shift and
Clear Mask

• Shift the core’s scan chains.
• Record any SDO channel miscompares

in the core’s respective error register.
• Clear the mask register.

Load Mask
• Do nothing to the core.
• Move the data from the SDI pipeline

stage to the mask register.

Capture • Trigger an at-speed capture sequence in
the core.

Nop
• Do nothing to the core.
• Move the data from the SDI pipeline

stage to the SDO pipeline stage.

The data registered in each core’s respective command
pipeline stage encodes the operation that the core or its
TAM circuitry are to do with the data currently resident in
the respective core’s SDI pipeline stage during the next
TAM_Clk cycle. The commands are for operations like
shift the scan chains, apply capture clocks, load a mask
value, or do nothing (Nop). The command operations are
applied to each core successively, one TAM_Clk cycle

apart, according to the cores’ positions in the pipeline. To
apply high-speed transition tests, the core will need an at-
speed capture mechanism that can be triggered by the
TAM’s capture command, as described in [10]. A set of
commands are listed in Table 1 and subsequent sections
will discuss how the commands are used in test application
protocols.

The SDI lane of Figure 1 conveys the test pattern sti-
mulus to each core in the staggered pipelined manner, but
it is also used for mask data and, in one configuration, for
expected response data. Extending the pipeline metaphor,
if we convey a test pattern through the pipeline with a se-
ries of shift commands and if we interrupt for a cycle the
application of the pattern and, instead, inject a Load Mask
or Nop command, then for that cycle we can be said to
have inserted a bubble into the pipeline. The bubble can be
used to insert data other than the scan input pattern data.
Figure 2: TAM Architecture Detail

Decoder

C
B

Nop

A

D

Cmd

SDI

Core

Mask

SDO

Error

1
00

1

0
1

0
1 Match

Figure 2 is a more detailed diagram of the TAM circui-

try provided for one core. (This circuitry is replicated for
each core.) Note that, in addition to the connections from
the SDI pipeline register to the core, there are connections
to a mask register and to the SDO pipeline register shown
with the hashed green lines.

The SDO lane has a comparator of the core’s scan out-
put stream and either an upstream core’s scan output or a
connection from the SDO pipeline register (of the present
core) shown as the hashed blue line. The comparator oper-
ation is conditioned by a mask value (yellow). Ones in the
mask disable the corresponding bit positions from mis-
matching. The bit-wise outputs of the comparator (light
blue) are provided to the error register. The error register
bits are “sticky” -- they record if any mismatch occurs

Paper 2.3 INTERNATIONAL TEST CONFERENCE 3

during a whole test application sequence. The total compa-
rator output is ANDed with the upstream pipeline match
signal. The MUXes of Figure 2 are described in subse-
quent sections but the configuration with all of the MUX
select signals set to zero corresponds to Figure 1. The sig-
nals A, B, C, and D are static configuration controls pro-
vided uniquely and separately to each core’s TAM circui-
try. The MUX selector, Nop, changes in response to the
command stream.

Masking is necessary to prevent corruption of the error
register if there are any unknown data in the core test pat-
tern. Instead of dedicating chip pins to masking as in [8],
this scheme uses the pipeline bubble method to provide
data to a mask register (depicted in Figure 2). This works
especially well if the pattern data has few masks or infre-
quently changing masks. The “Shift and Clear Mask”
command is an expedient way to clear the mask registers
without stalling the shifting. Control signals A also force
all channels to be masked if a core is to be removed from
the collective test. A consequence of this masking method
is that the number of cycles in each pattern, as translated to
chip pins, may vary.

In the next few sections we will consider different con-
figurations and usage modes of the individual core TAM
circuits of Figure 2 in pipelined assemblies.

2.1. Full-Rate Self-Compare Mode

Figure 3: Full-Rate Self-Compare Mode
Cmd
SDI

SDOin

Match
1

12 0

By rededicating all the scan output pins of the chip to

be input pins for expected pattern data, the TAM circuitry
can be configured to have each core’s test results com-
pared to the expected results. To do this, control signals B
and C for each core are set to one. This configures a pipe-
line arrangement as depicted in Figure 3. In this mode, for
each shift type command cycle, each core successively
compares its results to the expected pattern data and passes
on its component of the total comparison result down the
match chain. The match pipeline chip output indicates on a
cycle-by-cycle basis whether any core mismatched on any
channel. The error registers record whether their respective
cores ever mismatched. This full-rate self-compare mode
provides a pass/fail determination for N cores individually
in the time it takes to test one core (a throughput increase
of a factor of N).

2.2. Interleaved Self-Compare Mode
The conventional protocol of a scan test pattern appli-

cation is Shift, Shift, …, Shift, Capture, Shift, …, Shift,
etc. We may accomplish a time multiplex of interleaved
use of the SDI stream by changing the test application to
Nop, Shift, Nop, Shift, ..., Nop, Shift, Capture, Nop, Shift,
Nop, Shift, …, Nop, Shift, etc. On the Nop cycles, the
MUX in front of the SDO pipeline register loads data from
the SDI stream (the right side hashed green line of Figure
2). Setting the control signal B to one allows that data to
be presented to the comparator. Alternately, expected data
with a Nop command and then stimulus data with a Shift
command are applied. On the shift cycles, the MUXes
with selector C determine which of either the respective
core’s scan output stream or an upstream core SDO stage’s
data are loaded into the respective core’s SDO stage. By
appropriately setting the collective set of each core’s con-
trol signals C, any one of the cores’ scan output streams
can be piped to the chip’s SDO outputs.
Figure 4: Interleaved Self-Compare Mode

Match
1

SDOout

Cmd
SDI

Match
1

Nop(K+1) Shift(K) Nop(K)

Shift(K+1) Nop(K+1) Shift(K)

SDOout
(K-1)

(K-1)

12 0

Cmd
SDI

12 0

Figure 4 depicts two successive operational states of

the TAM circuitry configured to directly observe core 1’s
scan output stream in interleaved self-compare mode. In
this example C[2:0]=(0,0,1). This mechanism of selecting
which core’s response is to be directly observed has the
beneficial characteristic that the test pattern as translated to
chip pins is the same irrespective of which core is chosen.
The match pipeline chip output indicates on a cycle-by-
cycle basis whether any core mismatched on any channel.
The error register records whether each core ever mis-
matched. Interleaved self-compare mode shifts every other
cycle so it provides a pass/fail determination for N cores

Paper 2.3 INTERNATIONAL TEST CONFERENCE 4

individually in the time it takes to test two cores serially (a
throughput increase of a factor of N/2).

2.3. Inter-core Compare Mode
If a core is directly observed and confirmed by ATE to

be good and if other cores are compared to the verified
core and shown to produce the same responses as the di-
rectly observed core, then the other cores are also verified.
This is the principle of the inter-core compare mode, an
arrangement of which is depicted in Figure 5. In this ex-
ample core 2 has on a previous experiment been directly
observed to fail the test pattern. Core 1 has been confi-
gured to be directly observed for the current experiment.
The match AND gate of core 2 has been bypassed by set-
ting control signal D[2]=1. In inter-core compare mode the
error register of the most upstream core participating on
the test does not provide any useful test information. In
this example the error register of core 0 (not shown) will
indicate any mismatches that may occur between it and the
directly-observed core 1. The match signal indicates if any
cores disagree on a cycle-by-cycle basis.
Figure 5: Inter-core Compare Mode

Cmd
SDI

SDOout
X

1
Match

01

1’s

2

With inter-core compare, the throughput acceleration is

more complicated to reckon because, if the directly ob-
served core turns out to be bad, additional experiments
may be needed to determine the disposition of the other
cores. Consider the flow for testing a quad-core chip with
inter-core compare mode. Suppose there is a policy that
there must be at least two good cores to salvage the chip as
a usable (but derated) chip. We start by running an expe-
riment with direct observation of core 3. If core 3 is ob-
served to pass the test pattern, then we may determine the
disposition of cores 2, 1, and 0 by checking their respec-
tive error registers at the conclusion of the experiment. If,
on the first experiment, core 3 is bad then we remove core
3 from the configuration by setting control signal A[2]=1
and configure core 2 for direct observation by setting
C[2:0]=(0,1,1). Then a second experiment is run and, if
core 2 is good, then we know the disposition of cores 1
and 0 as well; otherwise, we must run a third experiment
directly observing core 1 by setting C[2:0]=(0,0,1). In the
case that the third experiment finds core 1 to be bad, the
program exits without a pass/fail determination for core 0
because the chip has failed the deration policy. The aver-
age number of experiments, E, that are necessary to deter-

mine pass/fail status of each core (up to the choice to exit
according to the deration policy) may be calculated as a
function of the per core yield, Y. It is pessimistic to assume
that the yield of a particular core is the same regardless of
whether other cores are defective [11], but let us hold with
that pessimistic assumption for the sake of simplicity in
this explanation. For this “at least two out of four core”
example, Table 2 shows the relative probabilities of all
possible experimental outcomes.
Table 2: Four-core Experiment Probability (Pessimistic)

Core[3:0]
pass/fail

Number Of
Experiments Probability

PPPP 1 Y4
PPPF 1 Y3(1-Y)
PPFP 1 Y3(1-Y)
PPFF 1 Y2(1-Y)2
PFPP 1 Y3(1-Y)
PFPF 1 Y2(1-Y)2
PFFP 1 Y2(1-Y)2
PFFF 1 Y(1-Y)3
FPPP 2 Y3(1-Y)
FPPF 2 Y2(1-Y)2
FPFP 2 Y2(1-Y)2
FPFF 2 Y(1-Y)3
FFPP 3 Y2(1-Y)2
FFPF 3 Y(1-Y)3
FFFP 3 Y(1-Y)3
FFFF 3 (1-Y)4

Adding the like terms weighted for the number of ex-
periments we obtain

+−+−+= 2234)1(10)1(5)(YYYYYYE

 43)1(3)1(9 YYY −+− (1)

which simplifies to a quadratic

 33)(2 +−= YYYE (2)

If the per core yield is greater than 38% then the inter-
core compare mode has a throughput advantage over the
interleaved compare mode; that is, in this example for

%38>Y , in high volume production we can test the
quad-core chip in less time than it takes to test two cores
serially. For Y=90%, the average number of experiments is
1.1.

Consider the general case in which there are N cores
and we require at least G good cores to sell the chip. We
denote the maximum number of experiments to identify all
of the good cores on all of the sellable chips as Emax. If we
conduct N-G experiments in which each of the directly
observed cores fails, then there is only one last experiment
to determine if the remaining G cores are all good; there-
fore

 1max +−= GNE (3)

If we require the Emax experiments it is because we
have failed Emax-1 cores by successive direct observation

Paper 2.3 INTERNATIONAL TEST CONFERENCE 5

experiments. The probability of Emax-1 cores failing is
1max)1(−− EY . By counting the experiments and the proba-

bilities that the respective experiments will be necessary
we obtain

)1(1)(=YE �Prob. of need of 1st experiment (4)
1)1(1 Y−+ �Prob. of need of 2nd experiment

�+
1max)1(1 −−+ EY �Prob. of need of Emax experiment

Combining equations (3) and (4) yields the following
general formula for the average number of experiments.

 �
−

=

−=
GN

i

iYGNYE
0

)1(),,((5)

2.4. Direct Core Access using Asymmetric
Hardware Compression

For microprocessor cores, the use of on-chip hardware
for scan compression is common. The SDI pins of the
TAM feed a decompressor and the SDO pins come from a
compactor for each core. A common configuration has
been one with an equal number of input and output chan-
nels entering and leaving each core. However, commercial
hardware compression tools have recently started support-
ing a higher compaction ratio at the scan output of the core
compared to the decompression ratio at the input. As a
result, as compared to the symmetrical input to output
scheme, use of just the higher output compaction liberates
outputs that may then be redeployed for other purposes.
The proposed TAM architecture can easily be extended to
utilize the availability of the liberated output channels for
multiple tracks of inter-core compare.

If the output compaction ratio is chosen to be twice
that of the input compression ratio, only half as many out-
put channels are required. The remaining half of the output
channels can be utilized in at least two ways:

• The liberated channels can be reapportioned to the input
and output channels according to the 2:1 ratio respec-
tively to achieve greater compression.

• The spare output channels can be used to directly ob-
serve the response of another core. This allows for two
sets of cores to be compared in parallel to each observa-
ble core.

Figure 6 illustrates the second scenario for a chip with
four cores. Since there are two available cores that are
fully observable, two tracks of two cores configured in
inter-core compare mode are used. In this way the pipeline
of inter-core comparison is limited to two, instead of four,
cores. The shorter pipelines of comparison in parallel al-
low for lower maximum number of experiments (Emax)
needed to detect failing cores.

The use of multiple tracks for a direct-compare mode is
not necessarily contingent on the use of asymmetric hard-
ware compression. The total number of available TAM

channels can be distributed across multiple tracks; howev-
er, there are a few tradeoffs involved.

If the compression ratio remains unchanged, going
from one track to multiple tracks reduces the number of
available channels to each core, which results in an in-
crease in the scan chain lengths; this, in turn, results in an
increase in the overall test time.

A second tradeoff is that if the scan chain lengths re-
main unchanged, going from one track to multiple tracks
requires an increase in the effective compression and com-
paction ratio to account for the fewer number of available
scan channels; this, in turn, typically results in an increase
in the decompressor and compactor area.
Figure 6: TAM with Asymmetric Hardware Compression

16

16

32

X

X

1

1

2

1’s

1’s

3

01

Consider the flow for testing a quad-core chip with in-

ter-core compare mode across two tracks, as shown in
Figure 6. Suppose there is a policy that there must be at
least two good cores to salvage the chip as a usable de-
rated chip. We start by running an experiment with direct
observation of Core 1 and Core 3; in each experiment, the
cores in both tracks are tested in parallel. If Core 1 and
Core 3 are observed to pass the test pattern, then we may
determine the disposition of the remaining cores by check-
ing their respective error registers at the conclusion of the
experiment. If, however, Core 1 or Core 3 is bad on the
first experiment, then we remove the bad core for observa-
tion and configure the other core in the respective track to
become the observable core. Thus, similar to the case with
a single track of inter-core compare mode, depending on
the pass or fail status of the observable core in each track
after each experiment, each track can be re-configured
independently to switch to a different observable core.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 6

As in the case with a single track, the average number
of experiments, E, necessary to determine the pass/fail
status of each core may be calculated as a function of the
per-core yield, Y. Table 3 shows the relative probabilities
of all possible experimental outcomes for a quad-core with
two tracks.
Table 3: 4-Core, 2-Track Experiment Probability

Core[1:0],
Core[3:2]
pass/fail

Number Of
Experiments

Probability

PP,PP 1 Y4
PP,PF 1 Y3(1-Y)
PP,FP 2 Y3(1-Y)
PP,FF 2 Y2(1-Y)2
PF,PP 1 Y3(1-Y)
PF,PF 1 Y2(1-Y)2
PF,FP 2 Y2(1-Y)2
PF,FF 2 Y(1-Y)3
FP,PP 2 Y3(1-Y)
FP,PF 2 Y2(1-Y)2
FP,FP 2 Y2(1-Y)2
FP,FF 2 Y(1-Y)3
FF,PP 2 Y2(1-Y)2
FF,PF 2 Y(1-Y)3
FF,FP 2 Y(1-Y)3
FF,FF 2 (1-Y)4

Again, adding the like terms weighted for the number

of experiments we obtain:

+−+−+= 2234)1(11)1(6)(YYYYYYE

 43)1(2)1(8 YYY −+− (6)

which simplifies to:

 22)(YYE −= (7)

which, interestingly, has a different sign in Y2 compared to
the single-track example.

Extending this calculation for the general case of N
cores and G required good cores with T tracks requires
some analysis. Since multiple cores are tested in each ex-
periment, several outcomes are possible depending on the
number of passing cores. Also, the pass/fail information
about all downstream cores will be available for the tracks
that have passing cores in the current experiment.

),1min(max T
NGNE +−= (8)

The maximum number of experiments required is giv-
en by equation (8). This is because the worst case for the
number of experiments occurs when all the failures are in
the same track. The term N-G+1 takes into account the fact
that the maximum number of failures allowed can be less
than the depth of each track.

The average number of experiments is derived using a
recursive algorithm. The recursion has two terms, the first
in case no information about any passing core is available
(e.g., at the beginning of the experiment) and the second
taking into account information about passing cores. These
two terms are given in equations (9) and (10), where P
represents the number of passing cores after an experi-
ment. If the arrangement of cores in multiple tracks is
thought of as a rectangle with height T and width (N/T),
the two terms are reducing the width and height of the
rectangle respectively.
Figure 7: Recursive Partitioning Example

This algorithm is best illustrated with the help of an

example. Consider the example SoC in Figure 7 (a), which
has 12 cores in four tracks with three cores in each track.
The color blue means no information about the core is
available; green and red represent passing and failing cores
respectively. Cores that are part of the current evaluation
are shown in orange. Let the minimum number of good
cores required, G, be 8. In the first experiment, four cores

 �
−

=

− −+−−−+==
),min(

1

)(),,,,()1(1)0,,,,(
TGN

i

i
T

iiT iTTYiTGTNECYYPTYGNE (9)

)0,,,,()1()0,,,,(
),min(

0

)(PTY
T

PNjG
T

PNNEYYCPTYGNE
T

PNGN

j

jjj T
PN

T
PN −−+−−=> �

−

=

− (10)

Paper 2.3 INTERNATIONAL TEST CONFERENCE 7

(2, 5, 8, and 11) are tested. Since an experiment is done, 1
is added to the term in equation (9). The next expression in
equation (9) sums over all the possibilities of a different
number of cores passing this experiment. The probability
that exactly i cores fail in the current experiment is given
by i

T
iiT CYY)1()(−− . In this case, the next term should

take into account the (T-i) passing cores among the re-
maining (N-T) cores to be tested with a requirement of at
least G-(T-i) good cores. In the example of Figure 7 (c),
i = 2. Hence, the algorithm now moves to equation (10) to
calculate E(N=8,G=6,T=4,P=2).

Equation (10) sums over all the possibilities of a dif-
ferent number of cores passing in the tracks with passing
cores in the previous experiment. In the case of our exam-
ple, it is summing over all possibilities for cores 0, 1, 3,
and 4. For exactly j cores failing among these cores, the
recursion algorithm continues with the remaining cores (N-
PN/T) in the remaining tracks (T-P), with the requirement
that at least G-(PN/T-j) cores pass. Since we don’t know
anything about the cores in the remaining tracks, equation
(9) is used. If we assume that only core 0
failed, the algorithm will progress to calculate
E(N=4,G=3,T=2,P=0) as shown in Figure 7 (d).

3. Trade-offs between Test Throughput, Di-
agnosis, and TAM Complexity

We have discussed various configurations and modes
of use of this modular pipelined TAM for multiple identic-
al cores. Full-rate compare can determine the pass/fail dis-
position of any number of cores in essentially the same
time as it takes to test a single core. Interleaved compare
mode takes twice as long to make the determination. The
throughput acceleration afforded by inter-core compare
modes are strong functions of yield or defectivity. The
main difference between these usage modes is the amount
of diagnostic information that can be gathered.

The only diagnosis data that is produced by full-rate
compare mode is which scan chains fail on defective
cores. That is very low resolution data of very limited use
for yield learning. But if the SoC test yield is 99%, there
may be no interest in yield improvement.

Debug and other purposes demand the existence of a
means to test one core at a time with maximum diagnostic
resolution. Such a mode requires the existence of scan
output pins. In practice, it may not be acceptable to have
some SoC pins be configurable as both inputs for expected
response data in full-rate compare mode and scan outputs
in a single-core full-access mode. So full-rate configura-
tion may not be attractive or attainable for some SoCs or
for some times in a SoC’s manufacturing cycle.

Interleaved compare mode can fully observe any single
core, but there is only failing chain data for the non-
observed cores. The translated test pattern is the same re-
gardless of which core is observed so, for volume produc-
tion, every core can be directly observed for a fraction of
the volume. But the throughput gains of full-rate self-

compare mode are not limited to a factor of 2, so the facto-
ry might want to choose between interleaved compare and
full-rate self-compare depending on the per-core yield.
Inter-core compare mode is biased for directly observing
the most upstream core. For SoCs with many cores, the
downstream cores would be observed very infrequently.
This sampling bias can be remedied by providing more
configuration circuitry such that the TAM is made into a
ring wherein any core can be the most upstream entry
point.

The analysis methodology for the expected number of
experiments for the different numbers of tracks and dera-
tion policies can lead to another regime of optimization
criteria. More tracks afford more direct observations and
more diagnostic information. We’ve also seen that, for a
given number of cores, the optimal number of tracks (from
a throughput perspective) may depend on the per-core
yield. This highlights the possibility of providing more
TAM circuitry to configure different numbers of tracks.
Figure 8: Expected Experiments vs. Core Yield for 4 Cores

Consider the example of four cores with a requirement

that at least two of them must be good. The expected num-
ber of experiments required in the inter-core compare
mode for a single track (T=1) and two tracks (T=2) are
given by formulae (2) and (7) respectively. Figure 8 shows
the average number of experiments plotted against the core
yield. Lower average number of experiments means the
SoC spends less time on the tester and, hence, will lower
the test costs. As seen from Figure 8, if the yield per core
is less than 50%, two tracks with two cores in each track is
better that a single track of four cores.

The same idea can be extended to 12 cores. Using
formulae (9) and (10), Figure 9 shows the expected num-
ber of experiments vs. yield for the case of 12 cores, where
no more than two cores may fail, and for four different
track configurations (T=1,2,3,4). This graph shows that as
the number of tracks T increases, the expected number of
experiments E falls for low yield (Y<40%), but it increases
for high yield (Y>70%). Using this analysis, the TAM
may be reconfigured dynamically to select an arrangement

Paper 2.3 INTERNATIONAL TEST CONFERENCE 8

of tracks that minimizes the expected experiments for a
given yield.
Figure 9: Expected Experiments vs. Core Yield for 12 Cores

4. Preparing TAM Test Patterns
One advantage of a test access mechanism for multiple

identical cores is that it may permit the test generation
process to focus on generating tests for one instance of the
core, and then engage the TAM to apply that test pattern to
all of the identical cores without explicitly targeting each
core during test generation. The following procedure uses
this idea to produce and apply test patterns that utilize the
TAM described above:

1. Generate core-level patterns
2. Translate to TAM patterns
3. Apply tests to chip, collect TAM fail data
4. Translate fail data to core level
5. Diagnose failures at core level

Step one refers to generating patterns that are suitable
for application at the boundary of the core, such as in-
stance 0 of the core inFigure 1. The translations mentioned
in steps 2 and 4 are introduced as a type of pattern data
manipulation wrapper around the step of using the TAM
when testing the chip. Prior work of TAM pattern transla-
tion was presented by Marinissen et. al. [12]. An examina-
tion of this translation process is another approach to un-
derstanding the proposed TAM. The task of translating
patterns and fail data can be segmented into a few basic
transformations of the pattern data which are described
incrementally in the following subsections.

4.1 Pipelining and TAM Instructions
The most basic transformation required when translat-

ing core-level pattern data to TAM patterns is handling the
additional pipeline stages that are introduced between the
core boundary and the chip pins. As an example, consider
the core-level pattern data that is prepared for application
at the core boundary for a very simple example core with a
single scan chain of four scan flops. This core-level pat-
tern is represented in Table 4, showing pattern data fed

into the inputs (In) and expected values at the output pins
(Out) for each cycle. The load and unload data for the first
pattern is colored blue, and the load data for the second
pattern is green. The “C” represents the cycle in which
capture clocks are applied between loading and unloading
pattern data.
Table 4: Core-level Pattern Data

Suppose we have a design that contains three instances
of this example core as in Figure 5, and we wish to trans-
late the core-level pattern data to use the proposed TAM in
inter-core compare mode. From the perspective of core 1,
the TAM introduces two pipeline stages to the input
stream, and two pipeline stages to the output stream. The
transformation to handle the additional pipeline stages is
straightforward, as depicted in Table 5.
Table 5: After Pipeline Transform

The data provided at the input pins for this pattern is
unchanged, but the pattern data is delivered to the core 2
stages later due to the pipelining of the input stream, as
shown in Figure 5. The TAM instructions will be deli-
vered to the core with the same pipelining as the input
pattern data, causing the TAM circuitry to execute the
shifts and captures on core 1 at the correct times (two
cycles after they appear at the chip inputs).

In Table 5, the expected output data is transformed to
reflect the delay in data coming out of core 1. The output
of core 1 is delayed by two cycles due to input stream pi-
pelining, and an additional 2 cycles due to output stream
pipelining, producing a transformation of the output data
that delays the expected values by four cycles.

Table 5 also depicts the addition of expected data for
the Match signal produced by the TAM comparator sys-
tem. Adding this match data is a simple matter of expect-
ing the Match output to show its affirmative value for
every cycle that produces expected data from the cores.
The Match data is pipelined with the rest of the output
data, so it receives the same pipeline transformation as the
other output data.

It is important to note that, although we have been de-
scribing the pattern data from the perspective of core 1, the
resulting transformed pattern will work with inter-core
compare mode regardless of which core is being observed.
This is because the pipeline transformation for TAM-
enabled modes depends only on the sum of input and out-
put stream pipeline depths, and that sum is the same for all
cores (1+3 for core 3, 2+2 for core 1, and 3+1 for core 0).

Cycle: 1 2 3 4 5 6 7 8 9
In: 1 2 3 4 C 1 2 3 4

Out: - - - - - 1 2 3 4

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13
TAM Cmd: S S S S C S S S S C S S S

SDI: 1 2 3 4 C 1 2 3 4 C 1 2 3
SDOout: - - - - - - - - - 1 2 3 4

Match: - - - - - - - - - 1 1 1 1

Paper 2.3 INTERNATIONAL TEST CONFERENCE 9

Therefore, only one translation is required to prepare pat-
terns for inter-core compare mode, regardless of the confi-
guration of the TAM’s core observation muxes.

4.2 X-Masking
We can further extend our working example to a case

in which we do not know what the expected value is for
one of the cycles of the core-level data. Table 6 shows
this unknown value as an X.
Table 6: Core-level Pattern Data with X

The proposed TAM includes a masking feature (de-
scribed in section 2.5) to prevent this unknown data from
causing a mismatch to be registered by the TAM compara-
tor system. To make use of this X-masking feature, the
translator must identify the cycles of unknown output data
and insert a new cycle into the input stream with the ap-
propriate TAM command and mask data.
Table 7: After X-Masking Transform

Table 7 depicts the translated pattern data for our ex-
ample, accommodating the X-masking feature (but without
the pipeline transformation at this point). Note especially
the new data inserted at cycle 8 to load the mask register.
The input stream is used to specify the mask register data
(M), and the TAM command stream is set to the “load
mask” instruction (L). The following cycle (9) is a shift
operation, but we change the TAM command to a “Shift
and Clear Mask” so that the X-mask register will be
cleared to permit the comparator to operate unmasked on
the last cycle of unload data. Note that the output stream
has a useless cycle, or “bubble,” in it at the time when the
extra cycle is inserted for loading the mask.

The translated pattern data in Table 7 can be further
transformed by the pipeline transformation described ear-
lier, resulting in a translation that handles both pipelining
and X-masking. It is easier to conceptualize performing
the pipeline transform after the X-masking transform due
to the complexity of positioning the inserted cycle, and the
resulting “bubble” in the output stream when that extra
cycle propagates to the output pins. The “bubble” remains
in its relative position when the pipeline transform is ap-
plied, but the entire output stream (including match signal)
is delayed by the total number of pipeline stages (input +
output) as mentioned earlier. The result of applying both
transforms is in Table 8.

To optimize the use of the X-mask feature, the X-mask
transformation must recognize that multiple consecutive

cycles of unload data with the same X pattern do not re-
quire multiple loads of the X-mask register. This require-
ment, along with the task of inserting cycles into the
streams, makes the X-mask transformation the most com-
plex transformation required for the proposed TAM.
Table 8: After X-Masking and Pipeline Transforms

4.3 Interleaved Data Insertion
To use interleaved self-compare mode, the translation

must insert additional cycles providing the expected data
on the input stream. Starting with the core-level pattern
data from Table 4, the interleave-transformed data will
appear as in Table 9.
Table 9: After Interleave Transform

The interleave transform is simply insertion of the ex-
pected data before each cycle when it would normally ap-
pear on the output of the core. As with X-masking, this
transform inserts cycles that did not exist in the original
core-level pattern; thus, it suffers from the same complexi-
ty of the X-masking, and is easiest to conceptualize when
applied before the pipeline transformation.

A translation process can be composed of a series of
these transforms according to the desired mode of TAM
operation. For example, to translate core-level patterns for
use in interleaved mode, the translation may be composed
by applying the X-masking transform, followed by the
interleave transform, and finally the pipeline transform.

4.4 Fail Data Translation
When the translated pattern is applied to the chip and

the fail data is collected, the fail data will not be readily
usable by diagnostic tools due to the translation performed
on the pattern data to enable the TAM features. Usually,
diagnostic tools utilize the same environment and models
that were used in the test generation process. In this case,
that test generation process is at the core level, so the fail
data must be translated back to a core-level perspective for
use by diagnostic tools.

To translate the fail data to a core-level perspective, we
have to account for all the cycles that were added to the
pattern data by translation (X-masking and interleaving),
as well as the offset of the pipeline transformation. Given
a failing cycle number (FailCycle), the resulting core-level
failing cycle number (FailCyclecore) is calculated according
to formula (11).

Cycle: 1 2 3 4 5 6 7 8 9
In: 1 2 3 4 C 1 2 3 4

Out: - - - - - 1 2 X 4

Cycle: 1 2 3 4 5 6 7 8 9 10
TAM Cmd: S S S S C S S L SCM C

In: 1 2 3 4 C 1 2 M 3 4
Out: - - - - - 1 2 - X 4

Match: 0 0 0 0 0 1 1 0 1 1

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
TAM Cmd: S S S S C S S L SCM S C S S S

In: 1 2 3 4 C 1 2 M 3 4 C 1 2 3
Out: - - - - - - - - - 1 2 - X 4

Match: - - - - - - - - - 1 1 - 1 1

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12
TAM Cmd: S S S S C N S N S N S …

In: 1 2 3 4 C 1 1 2 2 3 3 …
Out: - - - - - - 1 - 2 - 3 …

Match: 0 0 0 0 0 0 1 0 1 0 1 …

Paper 2.3 INTERNATIONAL TEST CONFERENCE 10

PipeStagesILFailCycleFailCycleCore −+−=)((11)

In formula (11), L represents the number of load mask
instruction cycles from the beginning of the pattern (cycle
0) up to the FailCycle. I represents the number of cycles
inserted to handle interleaved data up to the FailCycle, and
PipeStages is the sum of pipeline stages accounted for by
the translation (input + output).

As an example, suppose a chip is tested that will pro-
duce a mismatch on the fourth bit of the first pattern un-
load. The pattern in Table 8 will produce a fail log show-
ing a failing comparison on cycle 14. To translate this fail
cycle number to a core-level perspective, we subtract 1 to
account for the cycle inserted by the X-masking transform.
Then we subtract 4 to account for the pipeline transform.
This results in calculating cycle 9 as the core-level fail
cycle. Comparing this to Table 4, we see that cycle 9 cor-
responds to bit 4 of the first pattern unload, which was the
premise of this example, and will permit diagnostic tools
to interpret the fail data.

4.5 Final Considerations
When translating patterns for use with the proposed

TAM, a few additional considerations must be made. Dur-
ing the first pattern load operation, unknown data may
shift out of the cores and into the comparators; thus, the
translation process must use the “first pattern shift” com-
mand on the TAM command stream during the first load.

Also, care must be taken to ensure that the TAM logic
is initialized such that the error registers are cleared before
pattern data is applied. The TAM command pipeline
should also be cleared to contain the “Nop” instruction so
unknown commands do not execute at the cores while the
first cycle of data is still shifting through the input pipe-
line. Both of these can be accomplished by flushing the
TAM command pipeline with the “first pattern shift”
command followed by “Nop” commands.

5. Conclusions
We have described a Test Access Mechanism that uses

on-chip comparison to reduce the amount of test data and
time necessary to test an SoC with multiple identical cores.
The architecture is modular and scalable in timing and area
and easily works for a large number of cores in SoCs. Test
generation complexity of the SoC is also reduced since
core level patterns can be generated and reused for the
different cores. The protocol translation transforms re-
quired to convert the core-level patterns to SoC patterns
and the reverse for core-level diagnosis of SoC pattern
failures have been discussed.

The many usage modes and configurations of this ar-
chitecture allow for adapting to changing optimization
criteria over the manufacturing cycle of a product in a fac-
tory. There are a range of different operating points, from
early in a product’s life when yields are low and diagnos-

tics are very important, to a very mature product that re-
quires only minimal diagnostic monitoring. We have quan-
tified the throughput acceleration that can be expected of
the different modes. In particular, for reasonably high
yields, the single-track inter-core compare mode provides
highest testing throughput and a steady stream of diagnos-
tically useful data.

The proposed test access mechanism is flexible in de-
sign, configuration, and application, making it an attractive
solution to reduce test time when testing multiple identical
cores.

6. References
[1] Parulkar I., et. al., “A Scalable, Low Cost Design-for-

test architecture for UltraSPARC Chip Multi-
Processors”, Proc. of International Test Conference,
pp. 726-735, 2002.

[2] Riley, M., et. al., “Testability Features of the First-
Generation Cell Processor”, Proc. of International
Test Conference, Paper 6.1, 2005.

[3] Tan, P. J., et. al., “Testing of the UltraSPARC T1 Mi-
croprocessor and Its Challenges”, Proc. of Interna-
tional Test Conference, Paper 16.1, 2006.

[4] Molyneaux, R., et. al., “Design for Testability Features
of the SUN Microsystems Niagara2 CMP-CMT
SPARC Chip”, Proc. of International Test Confe-
rence, Paper 1.2, 2007.

[5] Silva, F. D., et. al., The Core Test Wrapper Handbook:
Rationale and Application of IEEE Std. 1500TM,
Springer-Verlag New York, LLC, 2006.

[6] Zorian, Y., et. al., “Testing Embedded-Core Based
System Chips”, Proc. Of International Test Confe-
rence, Paper 6.2, 1998.

[7] Goel, S. K., et. al., “Effective and Efficient Test Archi-
tecture Design for SOCs”, Proc. Of International Test
Conference, Paper 19.2, 2002.

[8] Makar S., et. al., “Testing of Vega2, a Chip Multi-
Processor with Spare Processors”, Proc. of Interna-
tional Test Conference, Paper 9.1, 2007.

[9] Atwell W. D. Jr., et. al., “Tester on a Chip (TOAC) or
Appratus for Application of Tests for Embedded Test
Points”, Journal of Motorola Technical Developments,
Volume 9, 1989.

[10] Wood, T., et. al., “The Test Features of the Quad-
Core AMD OpteronTM Microprocessor”, Proc. of In-
ternational Test Conference, 2008

[11] Stapper C. H., et. al., “Yield Model for ASIC and
Processor Chips”, International Workshop on Defect
and Fault Tolerance in VLSI System, 1993.

[12] Marinissen E. J., et. al., “The Role of Test Protocols
in Testing Embedded-Core-Based System ICs”, Eu-
ropean Test Workshop, 1999.

