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Abstract 
A new test access mechanism (TAM) for multiple iden-

tical embedded cores is proposed. It exploits the identical 
nature of the cores and modular pipelined circuitry to 
provide scalable and flexible capabilities to make trade-
offs between test time and diagnosis over the manufactur-
ing maturity cycle from low-yield initial production to 
high-yield, high-volume production. The test throughput 
gains of various configurations of this TAM are analyzed. 
Forward and reverse protocol translations for core pat-
terns applied with this TAM are described. 

  

1. Introduction 
Modern microprocessor designs have integrated mul-

tiple identical CPU core modules [1], [2], [3], [4]. In such 
designs, the multiple instances of the cores often comprise 
a large fraction of the total SoC integration.  In addition to 
the benefits of multiprocessing, such microprocessor archi-
tectures can afford attractive economical options of redun-
dant cores for manufacturing yield enhancement; that is, 
the product specification may be for six cores, whereas the 
SoC actually has eight cores. With a general embedded 
core test methodology such as IEEE Std. 1500 [5], the 
cores can be wrapped so that they have no interaction with 
outside data sources, and there exists the opportunity to 
generate the test for a single core and apply that test to 
each of the instances of the core. 

Modular SoC testing strategies have been presented in 
a variety of previous work.  Zorian et. al. [6] introduced a 
conceptual architecture for modular testing of SoCs, which 
includes three structural elements: test pattern source and 
sink, test access mechanism (TAM), and core test wrapper. 
Goel et. al. [7] discussed TAM and wrapper architecture 
design and optimization. But a significant improvement in 
efficiency is accomplished if the test can be applied simul-
taneously to all of the identical cores. It is conceptually 
simple to fanout the shared scan input data to the multiple 
cores but, given the limited test access, gathering the 
unique scan output data of the many cores is more compli-
cated. 

The Cell processor [2], the T1 processor [3], and the 
Niagara2 processor [4] use dedicated scan inputs and out-
puts for each unique core. This approach enables quick 
determination of defective cores but leads to higher test 
time since the number of scan flops in each chain will be 
higher. The UltraSPARC processor [1], which has two 
cores, includes a scan lockstep mode in which the scan 
chains in both the cores receive the same scan input data. 

The responses scanned out of both the cores are compared 
internally and a mismatch between any two bits is reported 
by a fail pin. In the AZSCAN architecture [8], multiple 
identical processor cores are tested in parallel by broad-
casting the scan data inputs to all of them. The responses 
of each of the cores are then compared on-chip with the 
expected data, which is also loaded from the tester, identi-
fying bad cores that are then either repaired or turned off. 

Our general strategy is to take advantage of the fact 
that all of the identical cores should respond identically to 
a pattern when they are isolated from interaction with out-
side data sources. This allows us to compare the cores’ 
output responses to either the expected response or to each 
other’s responses using on-chip comparators. Thus, this 
TAM with its on-chip comparators, besides being a vehicle 
to convey test data to and from the embedded cores, is a 
sort of compression scheme as well, since it compacts the 
pass/fail information of the cores using only one core’s 
output scan channels. Early work of on-chip comparison 
was published in 1989 [9]. 

The objectives and considerations that have guided our 
approach include the following: 
• Fault detection characteristics of core patterns as com-

prehended by the original core level ATPG must not be 
compromised. 

• We want our TAM not to be a limiting factor in how 
fast scan patterns can be applied to the multiple identic-
al cores. Practically, this implies the use of pipelining 
registers. 

• Our solution should be scalable. The core may be used 
in different SoC’s with different numbers of cores. Ex-
tension of the solution to handle different numbers of 
cores should be straightforward. 

• The solution should be flexible to accommodate a range 
of manufacturing optimization criteria and different 
SoC configurations. This flexibility is primarily related 
to the trade-off between ease of fault diagnosis and test 
throughput. 

• Though we expect our core’s test patterns to have some 
X data volume, we expect that the masking data volume 
is small compared to the total test pattern size. That is, 
for our application, we can optimize for sparse X’s. 

2.  Architecture 
Figure 1 is a simplified diagram of one configuration 

of the basic pipelined architecture for a toy example of 
treatment for three identical cores shown as the three larg-
er rectangles. The small rectangles are pipeline registers 
for the various data lanes. The four primary lanes of data 
are shown in magenta, green, blue, and red for command, 
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scan input (SDI), scan output (SDO), and match data re-
spectively. Data flow in the figure is from top and left to 
bottom and right. All of the lanes may comprise a plurality 
of bits. The comparators (circles) and AND gates comprise 
a cascaded output response comparator. With this pipeline 
structure, every core receives the same test pattern stimu-
lus in a staggered fashion. Several configurations of this 
triplet assembly will be discussed in subsequent sections; 
not every configuration uses all of the assembly’s inputs 
on the left nor all of its outputs on the right. Clocks for this 
structure are not shown, but consider that the TAM circui-
try receives a free-running clock stream (TAM_Clk) of the 
same frequency as is appropriate to shift data through the 
scan chains of the cores. All of the TAM pipeline registers 
are always updating with every cycle of TAM_Clk wheth-
er or not the cores are actually shifting. 
Figure 1: Simplified TAM Architecture 
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Table 1: TAM Commands 

Command Operation(s) 

Shift 
• Shift the core’s scan chains. 
• Record any SDO channel miscompares 

in the core’s respective error register. 
First Pattern 

Shift 
• Shift the core’s scan chains. 
• Reset the core’s error register. 

Shift and 
Clear Mask 

• Shift the core’s scan chains. 
• Record any SDO channel miscompares 

in the core’s respective error register. 
• Clear the mask register. 

Load Mask 
• Do nothing to the core. 
• Move the data from the SDI pipeline 

stage to the mask register. 

Capture • Trigger an at-speed capture sequence in 
the core. 

Nop 
• Do nothing to the core. 
• Move the data from the SDI pipeline 

stage to the SDO pipeline stage. 

The data registered in each core’s respective command 
pipeline stage encodes the operation that the core or its 
TAM circuitry are to do with the data currently resident in 
the respective core’s SDI pipeline stage during the next 
TAM_Clk cycle. The commands are for operations like 
shift the scan chains, apply capture clocks, load a mask 
value, or do nothing (Nop). The command operations are 
applied to each core successively, one TAM_Clk cycle 

apart, according to the cores’ positions in the pipeline. To 
apply high-speed transition tests, the core will need an at-
speed capture mechanism that can be triggered by the 
TAM’s capture command, as described in [10].  A set of 
commands are listed in Table 1 and subsequent sections 
will discuss how the commands are used in test application 
protocols. 

The SDI lane of Figure 1 conveys the test pattern sti-
mulus to each core in the staggered pipelined manner, but 
it is also used for mask data and, in one configuration, for 
expected response data. Extending the pipeline metaphor, 
if we convey a test pattern through the pipeline with a se-
ries of shift commands and if we interrupt for a cycle the 
application of the pattern and, instead, inject a Load Mask 
or Nop command, then for that cycle we can be said to 
have inserted a bubble into the pipeline. The bubble can be 
used to insert data other than the scan input pattern data.  
Figure 2: TAM Architecture Detail 
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Figure 2 is a more detailed diagram of the TAM circui-

try provided for one core. (This circuitry is replicated for 
each core.) Note that, in addition to the connections from 
the SDI pipeline register to the core, there are connections 
to a mask register and to the SDO pipeline register shown 
with the hashed green lines. 

The SDO lane has a comparator of the core’s scan out-
put stream and either an upstream core’s scan output or a 
connection from the SDO pipeline register (of the present 
core) shown as the hashed blue line. The comparator oper-
ation is conditioned by a mask value (yellow). Ones in the 
mask disable the corresponding bit positions from mis-
matching. The bit-wise outputs of the comparator (light 
blue) are provided to the error register. The error register 
bits are “sticky” -- they record if any mismatch occurs 
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during a whole test application sequence. The total compa-
rator output is ANDed with the upstream pipeline match 
signal. The MUXes of Figure 2 are described in subse-
quent sections but the configuration with all of the MUX 
select signals set to zero corresponds to Figure 1. The sig-
nals A, B, C, and D are static configuration controls pro-
vided uniquely and separately to each core’s TAM circui-
try. The MUX selector, Nop, changes in response to the 
command stream. 

Masking is necessary to prevent corruption of the error 
register if there are any unknown data in the core test pat-
tern. Instead of dedicating chip pins to masking as in [8], 
this scheme uses the pipeline bubble method to provide 
data to a mask register (depicted in Figure 2). This works 
especially well if the pattern data has few masks or infre-
quently changing masks. The “Shift and Clear Mask” 
command is an expedient way to clear the mask registers 
without stalling the shifting. Control signals A also force 
all channels to be masked if a core is to be removed from 
the collective test. A consequence of this masking method 
is that the number of cycles in each pattern, as translated to 
chip pins, may vary. 

In the next few sections we will consider different con-
figurations and usage modes of the individual core TAM 
circuits of Figure 2 in pipelined assemblies. 

2.1.  Full-Rate Self-Compare Mode 

Figure 3: Full-Rate Self-Compare Mode 
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By rededicating all the scan output pins of the chip to 

be input pins for expected pattern data, the TAM circuitry 
can be configured to have each core’s test results com-
pared to the expected results. To do this, control signals B 
and C for each core are set to one. This configures a pipe-
line arrangement as depicted in Figure 3. In this mode, for 
each shift type command cycle, each core successively 
compares its results to the expected pattern data and passes 
on its component of the total comparison result down the 
match chain. The match pipeline chip output indicates on a 
cycle-by-cycle basis whether any core mismatched on any 
channel. The error registers record whether their respective 
cores ever mismatched. This full-rate self-compare mode 
provides a pass/fail determination for N cores individually 
in the time it takes to test one core (a throughput increase 
of a factor of N). 

2.2.  Interleaved Self-Compare Mode 
The conventional protocol of a scan test pattern appli-

cation is Shift, Shift, …, Shift, Capture, Shift, …, Shift, 
etc. We may accomplish a time multiplex of interleaved 
use of the SDI stream by changing the test application to 
Nop, Shift, Nop, Shift, ..., Nop, Shift, Capture, Nop, Shift, 
Nop, Shift, …, Nop, Shift, etc. On the Nop cycles, the 
MUX in front of the SDO pipeline register loads data from 
the SDI stream (the right side hashed green line of Figure 
2). Setting the control signal B to one allows that data to 
be presented to the comparator. Alternately, expected data 
with a Nop command and then stimulus data with a Shift 
command are applied. On the shift cycles, the MUXes 
with selector C determine which of either the respective 
core’s scan output stream or an upstream core SDO stage’s 
data are loaded into the respective core’s SDO stage. By 
appropriately setting the collective set of each core’s con-
trol signals C, any one of the cores’ scan output streams 
can be piped to the chip’s SDO outputs.  
Figure 4: Interleaved Self-Compare Mode 
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Figure 4 depicts two successive operational states of 

the TAM circuitry configured to directly observe core 1’s 
scan output stream in interleaved self-compare mode. In 
this example C[2:0]=(0,0,1). This mechanism of selecting 
which core’s response is to be directly observed has the 
beneficial characteristic that the test pattern as translated to 
chip pins is the same irrespective of which core is chosen. 
The match pipeline chip output indicates on a cycle-by-
cycle basis whether any core mismatched on any channel. 
The error register records whether each core ever mis-
matched. Interleaved self-compare mode shifts every other 
cycle so it provides a pass/fail determination for N cores 
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individually in the time it takes to test two cores serially (a 
throughput increase of a factor of N/2). 

2.3.  Inter-core Compare Mode 
If a core is directly observed and confirmed by ATE to 

be good and if other cores are compared to the verified 
core and shown to produce the same responses as the di-
rectly observed core, then the other cores are also verified. 
This is the principle of the inter-core compare mode, an 
arrangement of which is depicted in Figure 5. In this ex-
ample core 2 has on a previous experiment been directly 
observed to fail the test pattern. Core 1 has been confi-
gured to be directly observed for the current experiment. 
The match AND gate of core 2 has been bypassed by set-
ting control signal D[2]=1. In inter-core compare mode the 
error register of the most upstream core participating on 
the test does not provide any useful test information. In 
this example the error register of core 0 (not shown) will 
indicate any mismatches that may occur between it and the 
directly-observed core 1. The match signal indicates if any 
cores disagree on a cycle-by-cycle basis. 
Figure 5: Inter-core Compare Mode 
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With inter-core compare, the throughput acceleration is 

more complicated to reckon because, if the directly ob-
served core turns out to be bad, additional experiments 
may be needed to determine the disposition of the other 
cores. Consider the flow for testing a quad-core chip with 
inter-core compare mode. Suppose there is a policy that 
there must be at least two good cores to salvage the chip as 
a usable (but derated) chip. We start by running an expe-
riment with direct observation of core 3. If core 3 is ob-
served to pass the test pattern, then we may determine the 
disposition of cores 2, 1, and 0 by checking their respec-
tive error registers at the conclusion of the experiment. If, 
on the first experiment, core 3 is bad then we remove core 
3 from the configuration by setting control signal A[2]=1 
and configure core 2 for direct observation by setting 
C[2:0]=(0,1,1). Then a second experiment is run and, if 
core 2 is good, then we know the disposition of cores 1 
and 0 as well; otherwise, we must run a third experiment 
directly observing core 1 by setting C[2:0]=(0,0,1). In the 
case that the third experiment finds core 1 to be bad, the 
program exits without a pass/fail determination for core 0 
because the chip has failed the deration policy. The aver-
age number of experiments, E, that are necessary to deter-

mine pass/fail status of each core (up to the choice to exit 
according to the deration policy) may be calculated as a 
function of the per core yield, Y. It is pessimistic to assume 
that the yield of a particular core is the same regardless of 
whether other cores are defective [11], but let us hold with 
that pessimistic assumption for the sake of simplicity in 
this explanation. For this “at least two out of four core” 
example, Table 2 shows the relative probabilities of all 
possible experimental outcomes. 
Table 2: Four-core Experiment Probability (Pessimistic) 

Core[3:0] 
pass/fail 

Number Of 
Experiments Probability 

PPPP 1 Y4 
PPPF 1 Y3(1-Y) 
PPFP 1 Y3(1-Y) 
PPFF 1 Y2(1-Y)2 
PFPP 1 Y3(1-Y) 
PFPF 1 Y2(1-Y)2 
PFFP 1 Y2(1-Y)2 
PFFF 1 Y(1-Y)3 
FPPP 2 Y3(1-Y) 
FPPF 2 Y2(1-Y)2 
FPFP 2 Y2(1-Y)2 
FPFF 2 Y(1-Y)3 
FFPP 3 Y2(1-Y)2 
FFPF 3 Y(1-Y)3 
FFFP 3 Y(1-Y)3 
FFFF 3 (1-Y)4 

Adding the like terms weighted for the number of ex-
periments we obtain 

+−+−+= 2234 )1(10)1(5)( YYYYYYE  

 43 )1(3)1(9 YYY −+−  (1) 

which simplifies to a quadratic 

 33)( 2 +−= YYYE  (2) 

If the per core yield is greater than 38% then the inter-
core compare mode has a throughput advantage over the 
interleaved compare mode; that is, in this example for 

%38>Y , in high volume production we can test the 
quad-core chip in less time than it takes to test two cores 
serially. For Y=90%, the average number of experiments is 
1.1. 

Consider the general case in which there are N cores 
and we require at least G good cores to sell the chip. We 
denote the maximum number of experiments to identify all 
of the good cores on all of the sellable chips as Emax. If we 
conduct N-G experiments in which each of the directly 
observed cores fails, then there is only one last experiment 
to determine if the remaining G cores are all good; there-
fore 

 1max +−= GNE  (3) 

If we require the Emax experiments it is because we 
have failed Emax-1 cores by successive direct observation 
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experiments. The probability of Emax-1 cores failing is 
1max)1( −− EY . By counting the experiments and the proba-

bilities that the respective experiments will be necessary 
we obtain 

)1(1)( =YE  �Prob. of need of 1st experiment (4) 
1)1(1 Y−+ �Prob. of need of 2nd experiment 

�+  
1max)1(1 −−+ EY �Prob. of need of Emax experiment 

Combining equations (3) and (4) yields the following 
general formula for the average number of experiments. 

 �
−

=

−=
GN

i

iYGNYE
0

)1(),,(  (5) 

2.4.  Direct Core Access using Asymmetric 
Hardware Compression 

For microprocessor cores, the use of on-chip hardware 
for scan compression is common. The SDI pins of the 
TAM feed a decompressor and the SDO pins come from a 
compactor for each core. A common configuration has 
been one with an equal number of input and output chan-
nels entering and leaving each core. However, commercial 
hardware compression tools have recently started support-
ing a higher compaction ratio at the scan output of the core 
compared to the decompression ratio at the input. As a 
result, as compared to the symmetrical input to output 
scheme, use of just the higher output compaction liberates 
outputs that may then be redeployed for other purposes. 
The proposed TAM architecture can easily be extended to 
utilize the availability of the liberated output channels for 
multiple tracks of inter-core compare. 

If the output compaction ratio is chosen to be twice 
that of the input compression ratio, only half as many out-
put channels are required. The remaining half of the output 
channels can be utilized in at least two ways: 

• The liberated channels can be reapportioned to the input 
and output channels according to the 2:1 ratio respec-
tively to achieve greater compression.  

• The spare output channels can be used to directly ob-
serve the response of another core. This allows for two 
sets of cores to be compared in parallel to each observa-
ble core. 

Figure 6 illustrates the second scenario for a chip with 
four cores. Since there are two available cores that are 
fully observable, two tracks of two cores configured in 
inter-core compare mode are used. In this way the pipeline 
of inter-core comparison is limited to two, instead of four, 
cores. The shorter pipelines of comparison in parallel al-
low for lower maximum number of experiments (Emax) 
needed to detect failing cores. 

The use of multiple tracks for a direct-compare mode is 
not necessarily contingent on the use of asymmetric hard-
ware compression. The total number of available TAM 

channels can be distributed across multiple tracks; howev-
er, there are a few tradeoffs involved.  

If the compression ratio remains unchanged, going 
from one track to multiple tracks reduces the number of 
available channels to each core, which results in an in-
crease in the scan chain lengths; this, in turn, results in an 
increase in the overall test time. 

A second tradeoff is that if the scan chain lengths re-
main unchanged, going from one track to multiple tracks 
requires an increase in the effective compression and com-
paction ratio to account for the fewer number of available 
scan channels; this, in turn, typically results in an increase 
in the decompressor and compactor area. 
Figure 6: TAM with Asymmetric Hardware Compression 
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Consider the flow for testing a quad-core chip with in-

ter-core compare mode across two tracks, as shown in 
Figure 6. Suppose there is a policy that there must be at 
least two good cores to salvage the chip as a usable de-
rated chip. We start by running an experiment with direct 
observation of Core 1 and Core 3; in each experiment, the 
cores in both tracks are tested in parallel. If Core 1 and 
Core 3 are observed to pass the test pattern, then we may 
determine the disposition of the remaining cores by check-
ing their respective error registers at the conclusion of the 
experiment. If, however, Core 1 or Core 3 is bad on the 
first experiment, then we remove the bad core for observa-
tion and configure the other core in the respective track to 
become the observable core. Thus, similar to the case with 
a single track of inter-core compare mode, depending on 
the pass or fail status of the observable core in each track 
after each experiment, each track can be re-configured 
independently to switch to a different observable core. 
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As in the case with a single track, the average number 
of experiments, E, necessary to determine the pass/fail 
status of each core may be calculated as a function of the 
per-core yield, Y. Table 3 shows the relative probabilities 
of all possible experimental outcomes for a quad-core with 
two tracks. 
Table 3: 4-Core, 2-Track Experiment Probability 

Core[1:0], 
Core[3:2] 
pass/fail 

Number Of 
Experiments 

 
Probability

PP,PP 1 Y4 
PP,PF 1 Y3(1-Y) 
PP,FP 2 Y3(1-Y) 
PP,FF 2 Y2(1-Y)2 
PF,PP 1 Y3(1-Y) 
PF,PF 1 Y2(1-Y)2 
PF,FP 2 Y2(1-Y)2 
PF,FF 2 Y(1-Y)3 
FP,PP 2 Y3(1-Y) 
FP,PF 2 Y2(1-Y)2 
FP,FP 2 Y2(1-Y)2 
FP,FF 2 Y(1-Y)3 
FF,PP 2 Y2(1-Y)2 
FF,PF 2 Y(1-Y)3 
FF,FP 2 Y(1-Y)3 
FF,FF 2 (1-Y)4 

 
Again, adding the like terms weighted for the number 

of experiments we obtain: 

+−+−+= 2234 )1(11)1(6)( YYYYYYE  

 43 )1(2)1(8 YYY −+−  (6) 

which simplifies to: 

 22)( YYE −=  (7) 

which, interestingly, has a different sign in Y2 compared to 
the single-track example. 

Extending this calculation for the general case of N 
cores and G required good cores with T tracks requires 
some analysis. Since multiple cores are tested in each ex-
periment, several outcomes are possible depending on the 
number of passing cores. Also, the pass/fail information 
about all downstream cores will be available for the tracks 
that have passing cores in the current experiment.  

),1min(max T
NGNE +−=  (8) 

The maximum number of experiments required is giv-
en by equation (8). This is because the worst case for the 
number of experiments occurs when all the failures are in 
the same track. The term N-G+1 takes into account the fact 
that the maximum number of failures allowed can be less 
than the depth of each track. 

The average number of experiments is derived using a 
recursive algorithm. The recursion has two terms, the first 
in case no information about any passing core is available 
(e.g., at the beginning of the experiment) and the second 
taking into account information about passing cores. These 
two terms are given in equations (9) and (10), where P 
represents the number of passing cores after an experi-
ment. If the arrangement of cores in multiple tracks is 
thought of as a rectangle with height T and width (N/T), 
the two terms are reducing the width and height of the 
rectangle respectively. 
Figure 7: Recursive Partitioning Example 

 
This algorithm is best illustrated with the help of an 

example. Consider the example SoC in Figure 7 (a), which 
has 12 cores in four tracks with three cores in each track. 
The color blue means no information about the core is 
available; green and red represent passing and failing cores 
respectively. Cores that are part of the current evaluation 
are shown in orange. Let the minimum number of good 
cores required, G, be 8. In the first experiment, four cores 

 �
−

=

− −+−−−+==
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1
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(2, 5, 8, and 11) are tested. Since an experiment is done, 1 
is added to the term in equation (9). The next expression in 
equation (9) sums over all the possibilities of a different 
number of cores passing this experiment. The probability 
that exactly i cores fail in the current experiment is given 
by i

T
iiT CYY )1()( −− . In this case, the next term should 

take into account the (T-i) passing cores among the re-
maining (N-T) cores to be tested with a requirement of at 
least G-(T-i) good cores. In the example of Figure 7 (c),  
i = 2. Hence, the algorithm now moves to equation (10) to 
calculate E(N=8,G=6,T=4,P=2). 

Equation (10) sums over all the possibilities of a dif-
ferent number of cores passing in the tracks with passing 
cores in the previous experiment. In the case of our exam-
ple, it is summing over all possibilities for cores 0, 1, 3, 
and 4. For exactly j cores failing among these cores, the 
recursion algorithm continues with the remaining cores (N-
PN/T) in the remaining tracks (T-P), with the requirement 
that at least G-(PN/T-j) cores pass. Since we don’t know 
anything about the cores in the remaining tracks, equation 
(9) is used. If we assume that only core 0 
failed, the algorithm will progress to calculate 
E(N=4,G=3,T=2,P=0) as shown in Figure 7 (d). 

3. Trade-offs between Test Throughput, Di-
agnosis, and TAM Complexity 

We have discussed various configurations and modes 
of use of this modular pipelined TAM for multiple identic-
al cores. Full-rate compare can determine the pass/fail dis-
position of any number of cores in essentially the same 
time as it takes to test a single core. Interleaved compare 
mode takes twice as long to make the determination. The 
throughput acceleration afforded by inter-core compare 
modes are strong functions of yield or defectivity. The 
main difference between these usage modes is the amount 
of diagnostic information that can be gathered. 

The only diagnosis data that is produced by full-rate 
compare mode is which scan chains fail on defective 
cores. That is very low resolution data of very limited use 
for yield learning. But if the SoC test yield is 99%, there 
may be no interest in yield improvement. 

Debug and other purposes demand the existence of a 
means to test one core at a time with maximum diagnostic 
resolution. Such a mode requires the existence of scan 
output pins. In practice, it may not be acceptable to have 
some SoC pins be configurable as both inputs for expected 
response data in full-rate compare mode and scan outputs 
in a single-core full-access mode. So full-rate configura-
tion may not be attractive or attainable for some SoCs or 
for some times in a SoC’s manufacturing cycle. 

Interleaved compare mode can fully observe any single 
core, but there is only failing chain data for the non-
observed cores. The translated test pattern is the same re-
gardless of which core is observed so, for volume produc-
tion, every core can be directly observed for a fraction of 
the volume. But the throughput gains of full-rate self-

compare mode are not limited to a factor of 2, so the facto-
ry might want to choose between interleaved compare and 
full-rate self-compare depending on the per-core yield. 
Inter-core compare mode is biased for directly observing 
the most upstream core. For SoCs with many cores, the 
downstream cores would be observed very infrequently. 
This sampling bias can be remedied by providing more 
configuration circuitry such that the TAM is made into a 
ring wherein any core can be the most upstream entry 
point.  

The analysis methodology for the expected number of 
experiments for the different numbers of tracks and dera-
tion policies can lead to another regime of optimization 
criteria. More tracks afford more direct observations and 
more diagnostic information. We’ve also seen that, for a 
given number of cores, the optimal number of tracks (from 
a throughput perspective) may depend on the per-core 
yield. This highlights the possibility of providing more 
TAM circuitry to configure different numbers of tracks. 
Figure 8: Expected Experiments vs. Core Yield for 4 Cores 

 
Consider the example of four cores with a requirement 

that at least two of them must be good. The expected num-
ber of experiments required in the inter-core compare 
mode for a single track (T=1) and two tracks (T=2) are 
given by formulae (2) and (7) respectively. Figure 8 shows 
the average number of experiments plotted against the core 
yield.  Lower average number of experiments means the 
SoC spends less time on the tester and, hence, will lower 
the test costs. As seen from Figure 8, if the yield per core 
is less than 50%, two tracks with two cores in each track is 
better that a single track of four cores. 

The same idea can be extended to 12 cores.  Using 
formulae (9) and (10), Figure 9 shows the expected num-
ber of experiments vs. yield for the case of 12 cores, where 
no more than two cores may fail, and for four different 
track configurations (T=1,2,3,4).  This graph shows that as 
the number of tracks T increases, the expected number of 
experiments E falls for low yield (Y<40%), but it increases 
for high yield (Y>70%).  Using this analysis, the TAM 
may be reconfigured dynamically to select an arrangement 
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of tracks that minimizes the expected experiments for a 
given yield. 
Figure 9: Expected Experiments vs. Core Yield for 12 Cores 

 

4. Preparing TAM Test Patterns 
One advantage of a test access mechanism for multiple 

identical cores is that it may permit the test generation 
process to focus on generating tests for one instance of the 
core, and then engage the TAM to apply that test pattern to 
all of the identical cores without explicitly targeting each 
core during test generation.  The following procedure uses 
this idea to produce and apply test patterns that utilize the 
TAM described above: 

1. Generate core-level patterns 
2. Translate to TAM patterns 
3. Apply tests to chip, collect TAM fail data 
4. Translate fail data to core level 
5. Diagnose failures at core level 

Step one refers to generating patterns that are suitable 
for application at the boundary of the core, such as in-
stance 0 of the core inFigure 1. The translations mentioned 
in steps 2 and 4 are introduced as a type of pattern data 
manipulation wrapper around the step of using the TAM 
when testing the chip. Prior work of TAM pattern transla-
tion was presented by Marinissen et. al. [12]. An examina-
tion of this translation process is another approach to un-
derstanding the proposed TAM. The task of translating 
patterns and fail data can be segmented into a few basic 
transformations of the pattern data which are described 
incrementally in the following subsections. 

4.1 Pipelining and TAM Instructions 
The most basic transformation required when translat-

ing core-level pattern data to TAM patterns is handling the 
additional pipeline stages that are introduced between the 
core boundary and the chip pins.  As an example, consider 
the core-level pattern data that is prepared for application 
at the core boundary for a very simple example core with a 
single scan chain of four scan flops.  This core-level pat-
tern is represented in Table 4, showing pattern data fed 

into the inputs (In) and expected values at the output pins 
(Out) for each cycle.  The load and unload data for the first 
pattern is colored blue, and the load data for the second 
pattern is green.  The “C” represents the cycle in which 
capture clocks are applied between loading and unloading 
pattern data. 
Table 4: Core-level Pattern Data 

Suppose we have a design that contains three instances 
of this example core as in Figure 5, and we wish to trans-
late the core-level pattern data to use the proposed TAM in 
inter-core compare mode.  From the perspective of core 1, 
the TAM introduces two pipeline stages to the input 
stream, and two pipeline stages to the output stream.  The 
transformation to handle the additional pipeline stages is 
straightforward, as depicted in Table 5. 
Table 5: After Pipeline Transform 

The data provided at the input pins for this pattern is 
unchanged, but the pattern data is delivered to the core 2 
stages later due to the pipelining of the input stream, as 
shown in Figure 5.  The TAM instructions will be deli-
vered to the core with the same pipelining as the input 
pattern data, causing the TAM circuitry to execute the 
shifts and captures on core 1 at the correct times (two 
cycles after they appear at the chip inputs). 

In Table 5, the expected output data is transformed to 
reflect the delay in data coming out of core 1.  The output 
of core 1 is delayed by two cycles due to input stream pi-
pelining, and an additional 2 cycles due to output stream 
pipelining, producing a transformation of the output data 
that delays the expected values by four cycles. 

Table 5 also depicts the addition of expected data for 
the Match signal produced by the TAM comparator sys-
tem.  Adding this match data is a simple matter of expect-
ing the Match output to show its affirmative value for 
every cycle that produces expected data from the cores.  
The Match data is pipelined with the rest of the output 
data, so it receives the same pipeline transformation as the 
other output data. 

It is important to note that, although we have been de-
scribing the pattern data from the perspective of core 1, the 
resulting transformed pattern will work with inter-core 
compare mode regardless of which core is being observed.  
This is because the pipeline transformation for TAM-
enabled modes depends only on the sum of input and out-
put stream pipeline depths, and that sum is the same for all 
cores (1+3 for core 3, 2+2 for core 1, and 3+1 for core 0).  

Cycle: 1 2 3 4 5 6 7 8 9 
In: 1 2 3 4 C 1 2 3 4 

Out: - - - - - 1 2 3 4 

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13
TAM Cmd: S S S S C S S S S C S S S

SDI: 1 2 3 4 C 1 2 3 4 C 1 2 3
SDOout: - - - - - - - - - 1 2 3 4

Match: - - - - - - - - - 1 1 1 1
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Therefore, only one translation is required to prepare pat-
terns for inter-core compare mode, regardless of the confi-
guration of the TAM’s core observation muxes. 

4.2 X-Masking 
We can further extend our working example to a case 

in which we do not know what the expected value is for 
one of the cycles of the core-level data.  Table 6 shows 
this unknown value as an X. 
Table 6: Core-level Pattern Data with X 

The proposed TAM includes a masking feature (de-
scribed in section 2.5) to prevent this unknown data from 
causing a mismatch to be registered by the TAM compara-
tor system.  To make use of this X-masking feature, the 
translator must identify the cycles of unknown output data 
and insert a new cycle into the input stream with the ap-
propriate TAM command and mask data. 
Table 7: After X-Masking Transform 

Table 7 depicts the translated pattern data for our ex-
ample, accommodating the X-masking feature (but without 
the pipeline transformation at this point).  Note especially 
the new data inserted at cycle 8 to load the mask register.  
The input stream is used to specify the mask register data 
(M), and the TAM command stream is set to the “load 
mask” instruction (L).  The following cycle (9) is a shift 
operation, but we change the TAM command to a “Shift 
and Clear Mask” so that the X-mask register will be 
cleared to permit the comparator to operate unmasked on 
the last cycle of unload data.  Note that the output stream 
has a useless cycle, or “bubble,” in it at the time when the 
extra cycle is inserted for loading the mask. 

The translated pattern data in Table 7 can be further 
transformed by the pipeline transformation described ear-
lier, resulting in a translation that handles both pipelining 
and X-masking.  It is easier to conceptualize performing 
the pipeline transform after the X-masking transform due 
to the complexity of positioning the inserted cycle, and the 
resulting “bubble” in the output stream when that extra 
cycle propagates to the output pins.  The “bubble” remains 
in its relative position when the pipeline transform is ap-
plied, but the entire output stream (including match signal) 
is delayed by the total number of pipeline stages (input + 
output) as mentioned earlier.  The result of applying both 
transforms is in Table 8. 

To optimize the use of the X-mask feature, the X-mask 
transformation must recognize that multiple consecutive 

cycles of unload data with the same X pattern do not re-
quire multiple loads of the X-mask register.  This require-
ment, along with the task of inserting cycles into the 
streams, makes the X-mask transformation the most com-
plex transformation required for the proposed TAM. 
Table 8: After X-Masking and Pipeline Transforms 

4.3 Interleaved Data Insertion 
To use interleaved self-compare mode, the translation 

must insert additional cycles providing the expected data 
on the input stream.  Starting with the core-level pattern 
data from Table 4, the interleave-transformed data will 
appear as in Table 9. 
Table 9: After Interleave Transform 

The interleave transform is simply insertion of the ex-
pected data before each cycle when it would normally ap-
pear on the output of the core.  As with X-masking, this 
transform inserts cycles that did not exist in the original 
core-level pattern; thus, it suffers from the same complexi-
ty of the X-masking, and is easiest to conceptualize when 
applied before the pipeline transformation. 

A translation process can be composed of a series of 
these transforms according to the desired mode of TAM 
operation.  For example, to translate core-level patterns for 
use in interleaved mode, the translation may be composed 
by applying the X-masking transform, followed by the 
interleave transform, and finally the pipeline transform. 

4.4 Fail Data Translation 
When the translated pattern is applied to the chip and 

the fail data is collected, the fail data will not be readily 
usable by diagnostic tools due to the translation performed 
on the pattern data to enable the TAM features.  Usually, 
diagnostic tools utilize the same environment and models 
that were used in the test generation process.  In this case, 
that test generation process is at the core level, so the fail 
data must be translated back to a core-level perspective for 
use by diagnostic tools. 

To translate the fail data to a core-level perspective, we 
have to account for all the cycles that were added to the 
pattern data by translation (X-masking and interleaving), 
as well as the offset of the pipeline transformation.  Given 
a failing cycle number (FailCycle), the resulting core-level 
failing cycle number (FailCyclecore) is calculated according 
to formula (11).  

Cycle: 1 2 3 4 5 6 7 8 9 
In: 1 2 3 4 C 1 2 3 4 

Out: - - - - - 1 2 X 4 

Cycle: 1 2 3 4 5 6 7 8 9 10
TAM Cmd: S S S S C S S L SCM C

In: 1 2 3 4 C 1 2 M 3 4
Out: - - - - - 1 2 - X 4

Match: 0 0 0 0 0 1 1 0 1 1

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
TAM Cmd: S S S S C S S L SCM S C S S S

In: 1 2 3 4 C 1 2 M 3 4 C 1 2 3
Out: - - - - - - - - - 1 2 - X 4

Match: - - - - - - - - - 1 1 - 1 1

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12
TAM Cmd: S S S S C N S N S N S …

In: 1 2 3 4 C 1 1 2 2 3 3 …
Out: - - - - - - 1 - 2 - 3 …

Match: 0 0 0 0 0 0 1 0 1 0 1 …
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PipeStagesILFailCycleFailCycleCore −+−= )(  (11) 

In formula (11), L represents the number of load mask 
instruction cycles from the beginning of the pattern (cycle 
0) up to the FailCycle.  I represents the number of cycles 
inserted to handle interleaved data up to the FailCycle, and 
PipeStages is the sum of pipeline stages accounted for by 
the translation (input + output). 

As an example, suppose a chip is tested that will pro-
duce a mismatch on the fourth bit of the first pattern un-
load.  The pattern in Table 8 will produce a fail log show-
ing a failing comparison on cycle 14.  To translate this fail 
cycle number to a core-level perspective, we subtract 1 to 
account for the cycle inserted by the X-masking transform.  
Then we subtract 4 to account for the pipeline transform.  
This results in calculating cycle 9 as the core-level fail 
cycle.  Comparing this to Table 4, we see that cycle 9 cor-
responds to bit 4 of the first pattern unload, which was the 
premise of this example, and will permit diagnostic tools 
to interpret the fail data. 

4.5 Final Considerations 
When translating patterns for use with the proposed 

TAM, a few additional considerations must be made.  Dur-
ing the first pattern load operation, unknown data may 
shift out of the cores and into the comparators; thus, the 
translation process must use the “first pattern shift” com-
mand on the TAM command stream during the first load. 

Also, care must be taken to ensure that the TAM logic 
is initialized such that the error registers are cleared before 
pattern data is applied.  The TAM command pipeline 
should also be cleared to contain the “Nop” instruction so 
unknown commands do not execute at the cores while the 
first cycle of data is still shifting through the input pipe-
line.  Both of these can be accomplished by flushing the 
TAM command pipeline with the “first pattern shift” 
command followed by “Nop” commands. 

5. Conclusions 
We have described a Test Access Mechanism that uses 

on-chip comparison to reduce the amount of test data and 
time necessary to test an SoC with multiple identical cores. 
The architecture is modular and scalable in timing and area 
and easily works for a large number of cores in SoCs. Test 
generation complexity of the SoC is also reduced since 
core level patterns can be generated and reused for the 
different cores. The protocol translation transforms re-
quired to convert the core-level patterns to SoC patterns 
and the reverse for core-level diagnosis of SoC pattern 
failures have been discussed. 

The many usage modes and configurations of this ar-
chitecture allow for adapting to changing optimization 
criteria over the manufacturing cycle of a product in a fac-
tory. There are a range of different operating points, from 
early in a product’s life when yields are low and diagnos-

tics are very important, to a very mature product that re-
quires only minimal diagnostic monitoring. We have quan-
tified the throughput acceleration that can be expected of 
the different modes. In particular, for reasonably high 
yields, the single-track inter-core compare mode provides 
highest testing throughput and a steady stream of diagnos-
tically useful data. 

The proposed test access mechanism is flexible in de-
sign, configuration, and application, making it an attractive 
solution to reduce test time when testing multiple identical 
cores. 

6. References 
[1] Parulkar I., et. al., “A Scalable, Low Cost Design-for-

test architecture for UltraSPARC Chip Multi-
Processors”, Proc. of International Test Conference, 
pp. 726-735, 2002. 

[2] Riley, M., et. al., “Testability Features of the First-
Generation Cell Processor”, Proc. of International 
Test Conference, Paper 6.1, 2005. 

[3] Tan, P. J., et. al., “Testing of the UltraSPARC T1 Mi-
croprocessor and Its Challenges”, Proc. of Interna-
tional Test Conference, Paper 16.1, 2006. 

[4] Molyneaux, R., et. al., “Design for Testability Features 
of the SUN Microsystems Niagara2 CMP-CMT 
SPARC Chip”, Proc. of International Test Confe-
rence, Paper 1.2, 2007. 

[5] Silva, F. D., et. al., The Core Test Wrapper Handbook: 
Rationale and Application of IEEE Std. 1500TM,  
Springer-Verlag New York, LLC, 2006. 

[6] Zorian, Y., et. al., “Testing Embedded-Core Based 
System Chips”, Proc. Of International Test Confe-
rence, Paper 6.2, 1998. 

[7] Goel, S. K., et. al., “Effective and Efficient Test Archi-
tecture Design for SOCs”, Proc. Of International Test 
Conference, Paper 19.2, 2002. 

[8] Makar S., et. al., “Testing of Vega2, a Chip Multi-
Processor with Spare Processors”, Proc. of Interna-
tional Test Conference, Paper 9.1, 2007. 

[9] Atwell W. D. Jr., et. al., “Tester on a  Chip (TOAC) or 
Appratus for Application of Tests for Embedded Test 
Points”, Journal of Motorola Technical Developments, 
Volume 9, 1989. 

[10] Wood, T., et. al., “The Test Features of the Quad-
Core AMD OpteronTM Microprocessor”, Proc. of In-
ternational Test Conference, 2008 

[11] Stapper C. H., et. al., “Yield Model for ASIC and 
Processor Chips”, International Workshop on Defect 
and Fault Tolerance in VLSI System, 1993. 

[12] Marinissen E. J., et. al., “The Role of Test Protocols 
in Testing Embedded-Core-Based System ICs”,   Eu-
ropean Test Workshop, 1999. 

 

 
 


