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Abstract

Circuit reliability is an increasingly important design con-
sideration for modern logic circuits. To this end, our work
focuses on the evaluation of circuit reliability under pro-
babilistic gate-level fault models that can capture both soft
errors, e.g., radiation-related, and spatially-uniform man-
ufacturing defects. This basic task can, in principle, be
used (i) by synthesis procedures to select more reliable
circuits, and (ii) to estimate yield for electronic nanotech-
nologies where high defect density is expected.

We propose a matrix-based formalism to compute the
error probability of the whole circuit based on pro-
babilities of specific gate errors. This formalism is sur-
prisingly related to that of quantum circuits, but also ex-
hibits several new features. The numerical computation of
error probabilities in large circuits runs into the same sca-
lability problems as the simulation of quantum circuits.
Therefore, we hope to adapt recent advances in quantum
circuit simulation to the context of this work.

1 Introduction

Device geometries continue to shrink in deep sub-micron
VLSI circuits as clock speeds increase and per-chip costs
drop. Finer device features make circuits more suscepti-
ble to manufacturing defects, noise-related transient faults
and interference from radiation. In particular, we distin-
guish (i) soft errorsthat occur non-deterministically and
may be related to alpha-particles or gamma-radiation [4],
and (ii) manufacturing defectsthat permanently damage
circuit components. Both types manifest in the form of

logic errors and may be difficult to prevent in the near-
future technologies. Therefore, fault-tolerance and error-
correction techniques appear increasingly important.

Previously, fault-tolerant circuits and architectures
have been proposed to absorb soft errors without jeo-
pardizing the function of computing systems. Examples
include totally self-checking circuits [5] and dynamic ve-
rification of microprocessor operations [1]. In the lat-
ter approach, when a fault is detected, the operation is
redone, with a serious runtime penalty. However, the
checker circuit is small and does not slow down the pro-
cessor until a fault is discovered. With dynamic verifica-
tion, the main processor does not have to be fully verified
because rare faults, not found during simulation, can be
tolerated. However, dynamic verification assumes very
low incidence of logic errors, which can only be guaran-
teed by circuit-level techniques.

The existing literature on circuit test and fault-tolerant
circuits typically uses interconnect-based models, e.g.,
stuck-atandbridging faults. While these models enable
fast and practically useful algorithms, they cannot ade-
quately model more subtle behavior that faulty gates may
exhibit. On the other hand, some interconnect faults can
be captured by gate-level fault models with the help of
fake buffers inserted at the right places.

The anticipation of high defect densities in circuit
components is supported by recent work on chemically-
assembled electronic nanotechnology [2]. The authors ex-
pect defect rates of 1-10% in first technology generations.
A proposed solution is a programmable circuit fabric with
test structures that would allow to discover all actual de-
fects in each circuit manufactured. A logic circuit can
then be mapped onto fully-functional gates and wires.



With less drastic means of tolerating errors in mind, our
work focuses on circuits with faulty gates. In particular,
we point out that technology-specific faults in logic gates
can be modeled probabilistically: for a given input, every
output can be observed with a certain probability. Such
models capture not only soft errors, but also manufactur-
ing defects that are equally likely to occur in any gate of
a given type. Our work shows that the probability of erro-
neous output depends not only on the faultiness of gates,
but also on circuit structure. Related logic optimization
would require a reliable way to evaluate the error proba-
bility of a circuit. The main contribution of this work is
an analytical technique for this task. This technique fun-
damentally differs from existing architectural [1, 4] and
empirical approaches. We also point out a surprising con-
nection between the evaluation of circuit error probability
and numerical simulation of quantum circuits.

The remaining part of this manuscript is organized as
follows. We introduce probabilistic gate-level fault mo-
dels in Section 2 where we also compute error-properties
of logic circuits with one-bit output. In Section 3 we
show that multi-output circuits can achieve better fault-
tolerance. Similarities of the error-probability computa-
tion to the simulation of quantum circuits are covered in
Section 4. Conclusions and on-going work are discussed
in Section 5.

2 Basic Methodology

Below we first introduce gate-level fault models and then
explain how error properties of a logic circuit can be mod-
eled in terms of those models. An example is given.

2.1 Probabilistic Gate-Level Fault Models

In error-free operation the function of a combinational
logic circuit or gate can be represented by atruth table,
which is a deterministic mapping of input values to out-
put values. For example, the truth table for an AND gate
maps the input value 01 to the output value 0. However,
in the presence of soft errors or manufacturing defects this
input may occasionally lead to a 1 at the output of the gate.
If we know how often this is likely happen, we can model
this behavior using aprobabilistic transfer matrix. In this
matrix, column indices represent input values, and row in-
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Figure 1: Probabilistic transfer matrices used for noisy
logic gates: (a) AND, (b) NOT, and (c) OR. The variable
p denotes the probability the gate will give an incorrect
output. Note matrices a and c are rotated.

dices represent output values, while matrix elements cap-
ture pair-wise transition probabilities.

For example, consider the possible probabilistic trans-
fer matrices shown in Figure 1 for the the standard AND,
NOT and OR gates. In these examples the gates give
the incorrect output value with probabilityp. In gen-
eral, we could use any fixed probability distribution for
the columns of the matrices. For example, if we knew
that the AND gate was twice as likely to give the incor-
rect output for inputs 01 and 10 versus for inputs 00 and
11, we could reflect this is the matrix:

[
1− p 1−2p 1−2p p

p 2p 2p 1− p

]
.

The only requirement is that each column sums to 1, since
we assume that some value is always seen at the output.
The number of rows and columns are exponential in the
number of gate inputs and outputs respectively.

2.2 Derivation of Circuit Properties

The concept of the probabilistic transfer matrix is not re-
stricted to gates. It can also represent the function of a
noisy circuit. The element in thei-th row andj-th column
represents the probability that thei-th output value will
be observed when thej-th input value is given to the cir-
cuit. Now for convenience we also define theideal trans-
fer matrix. This is the probabilistic transfer matrix when
there are no errors. Each column of this matrix contains
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Figure 2: Basic ways to interconnect circuit compo-
nents and the corresponding operation on the probabilistic
transfer matrices. (a) serial (b) parallel (c) fanout

exactly one 1 with the remaining elements being 0. Now
if we know the probability distribution of input values that
will be given to the circuit, that is, if we know that thei-th
input value will be given to the circuit with probabilitypi ,
then we can calculate the error probability of the circuit
from the ideal and probabilistic transfer matricesC andP:

2n−1

∑
i=0

pi ∑
j :C( j ,i)=0

P[ j ,i],

whereP[i, j ] denotes the element in thei-th row and j-th
column of matrixP. For the noisy AND gate in Figure 1a
this calculation gives a probabilityp that the gate will give
an incorrect output.

Therefore, if we can construct the probabilistic trans-
fer matrix for a circuit, then we can calculate its error
probability. Now we show that if we assume that gate
errors occur independently and we know the probabilistic
transfer matrices of the gates in the circuit, then by per-
forming operations on these we can obtain the probabilis-
tic transfer matrix of the circuit. The basic method is as
follows: we construct the circuit by connecting together
gates into sub-circuits then connecting together these sub-
circuits; each time we connect two components, we derive
the probabilistic transfer matrix of the combined circuit
from those of the components.

There are three basic ways in which components in a
well-formed circuit are combined: serially, in parallel,
and through fanout. These are illustrated in Figure 2. We
now show how each of these operations affects the prob-
abilistic transfer matrices.

Serial Composition is the most straightforward. This
occurs when a component acts on the outputs of another

component. The probabilistic transfer matrix of the result
is given by the product of those of the components.

For example, consider the serially connected compo-
nents shown in Figure 2a. SupposeA andB denote the
probabilistic transfer matrices of the two components. Let
componentA haven inputs andmoutputs, and component
B havem inputs andl outputs. Let us calculate the proba-
bility that when an inputi is given to the first component,
we observe an outputj. This is by definition the element
in the j-th row andi-th column of the overall error trans-
fer matrix. If an inputi is given to the first component, the
probability distribution of the outputs of the first compo-
nent are given by thei-th column ofA. The vector with
the probabilities that each of the possible inputs to the sec-
ond component give an outputj is given by thej row of
B. Therefore, the probability that the output of the second
component will bej, given thati is input to the first com-
ponent, is equal to the inner product of thei-th column of
A and the j-th row of B. Thus, the overall probabilistic
transfer matrix is given byB ·A.

Parallel Composition involves two or more circuit
components acting on disjoint sets of bits. The corre-
sponding matrix operation is the tensor product of the
probabilistic transfer matrices of the components.

Consider the example shown in Figure 2b. Suppose
A andB denote the probabilistic transfer matrices of the
two components. Let componentA haven inputs andm
outputs and let componentB havel inputs andk outputs.
Consider an inputi to the overall circuit, which can be par-
titioned into inputsiA andiB to the respective components
A andB. Since the two components are independent, the
probability distribution of the outputs for the first compo-
nent are given by theiA-th column ofA and those of the
second component are given by theiB-th column ofB. So
the probability that an outputj = ( jA jB) is observed is
given by the product

A[ jA,iA] ·B[ jB,iB],

which is the element in thei-th row and j-th column of
the combined probabilistic transfer matrix. Writing out
the entire matrix we have


A[0,0] ·B A[0,1] ·B · · · A[0,n] ·B
A[1,0] ·B A[1,1] ·B · · · A[1,n] ·B

...
...

A[m,0] ·B A[m,1] ·B · · · A[m,n] ·B


 ,
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Figure 3: Two circuits that compute the function
f (a,b,c) = b+a·c. The circuit to the right is more robust
to transient gate faults than the one to the left, assuming a
uniform gate failure probability.

which is equal to the tensor (Kronecker) productA⊗B.
Fanout When components are connected with fanout

an output of one component is connected to multiple in-
puts of the following component. In order to represent this
type of connection, we simply eliminate those columns in
the probabilistic transfer matrix of the second component
that correspond to different values on the copied wire.

For example, consider the circuit in Figure 2c. If com-
ponentB has two inputs both from the same output of
componentA, we would eliminate columns 1= {01} and
2 = {10} from componentB’s probabilistic transfer ma-
trix.

2.3 Circuit Example

Using the three basic operations above, we can find the
overall probabilistic transfer matrix for any well-formed
combinational circuit. Now we illustrate this method for
two different circuits shown in Figure 3, both computing
the functionf (a,b,c) = b+a·c. For convenience, we de-
note the probabilistic transfer matrices of the AND, NOT,
and OR gates by the names of the gates and to simplify
the algebra we defineq = 1− p. First we take the circuit
given in Figure 3a. At depth 1 we take the tensor of the
two AND gates:

T1 = AND⊗AND =
[

q q q p
p p p q

]
⊗

[
q q q p
p p p q

]
.

This yields a 4×16 matrix with column labelsabbc. In
order to reduce out the duplicate copy ofb we eliminate
the columns where the two copies are not the same, i.e.,
columns with labels of the formX01X andX10X. This
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Figure 4: Probability of incorrect output as a function of
gate error probability for the two circuits in Figure 3.

leaves the following transfer matrix:

T ′
1 =




q2 q2 q2 qp q2 q2 qp p2

qp qp qp q2 qp qp p2 qp

qp qp qp p2 qp qp q2 qp

p2 p2 p2 qp p2 p2 qp q2




.

Finally we apply the OR and NOT gates:

T3 = NOT·T2 = NOT·OR·T ′
1

For the circuit in Figure 3b, we have

T3 = OR· (AND⊗NOT) · (NOT⊗NOT⊗ I2),

whereI2 is the probabilistic transfer matrix for an ideal
wire, i.e., the 2×2 identity matrix.

We can now calculate the error probability for each
circuit given the input value distribution. Assuming that
all input values to the circuits are equiprobable, Figure 4
shows the probability of an incorrect output for both cir-
cuits with respect to the gate error probabilityp. The sec-
ond circuit has a lower probability of giving an incorrect
output over the entire range of gate error probabilities.
The basic intuition here is that long narrow circuits are



generally more error-prone than short wide ones. In this
example, all paths to the output in the first circuit must go
through the last two gates. Therefore, faults in either of
these gates affect all possible inputs. By contrast, in the
second circuit, only the last gate is used by all paths from
an input to the output.

This example should only be taken as an illustration of
our method, not as a realistic evaluation of the relative ro-
bustness of the circuits in Figure 3. In a real application
the probability that a gate fails would probably be corre-
lated with both the gate type and the gate inputs. Both
of these could be incorporated into our method by using
more accurate probabilistic transfer matrices for the gates
in the circuits.

3 Better Fault-Tolerance
using Multiple Outputs

Thus far our primary goal has been to evaluate error prop-
erties of different circuit structures that compute the same
function. However the achievable error properties for
the circuits we have considered have been limited by the
error-resistance of the gate driving the output: if this gate
gives a faulty output so does the circuit. This is a general
limitation of single-output circuits.

One way to decrease the probability of errors is to en-
code input and output using redundant wires. In this case,
a logical bit (or set of bits) is represented by a larger num-
ber of physical bits. For example, a simple output encod-
ing could map the logical value 0 to three physical bits
all with value 0, similarly with the logical 1 value. A cir-
cuit with a single logical output bit would actually have
three physical bits as outputs. If one of the output gates
fails, the correct logical output is still retrievable from the
remaining two correct output bits. Of course, decoding
circuitry is necessary at some point, only delaying the
inevitable single gate failure limit, however this may be
postponed to the end of the computation where this rel-
atively small decoding logic can be made physically ro-
bust. This is in contrast to making each of the circuit’s
gates physically more robust.

The use of encoded inputs and output fits relatively
seamlessly into our methodology. For representing the in-
put encoding, we have two choices: we can either choose

the input value distribution to reflect the encoding, i.e.,
have probability 0 for non-code values; or we can actually
eliminate the columns of the probabilistic transfer matri-
ces representing non-code values. The latter is very sim-
ilar to our method for representing fanout in Section 2.2.
In general the first method is conceptually simpler, but
may require extra unnecessary computations. At the out-
put we need to represent the mapping of physical output
bits to logical outputs; in our three bit example above, we
would map 000, 100, 010, and 001 all to the logical out-
put value 0. This is easily done by modifying the ideal
transfer matrix: rather than a single 1 in each column of
this matrix representing the correct output value, we have
multiple 1’s representing each of the possible correct out-
put values.

Another way to increase the error-resistance of a single
output circuit is to increase the reliability of the limiting
gate, namely the gate driving the output. This may be pos-
sible in some implementation and for some noise environ-
ments; for example, two basic gate sizes may be available
in some implementations with the larger being less sus-
ceptible to radiation effects. Carrying this argument fur-
ther, we could add the flexibility to choose gate sizes for
any of the gates in the circuit, given perhaps some limit on
the area overhead. However, in general it may not be ob-
vious which gates sizes should be increased to maximize
error-resistance. Our method for evaluating the circuit’s
error-resistance could be very useful for this.

4 Quantum Circuits and Scalability

Quantum computations are represented by complex uni-
tary matrices [6] (multiplying a unitary matrix by its
conjugate-transpose gives the identity matrix). The square
of the amplitude of each element gives the probability of
a transition from one basis state to another. Such matrices
capture the functions of individual quantum gates and also
whole quantum circuits (note that quantum gates have as
many inputs as outputs, ditto for quantum circuits). Quan-
tum states, including circuit input and output, are complex
vectors. Given a unitary matrix of a quantum gate, the
output is produced by input using matrix-vector multipli-
cation. Because of this, sequential composition is rep-
resented by the regular matrix-matrix multiplication and
parallel composition by the tensor (Kronecker) product.



This is similar to how we compute the probabilistic trans-
fer matrix of a circuit from gate matrices.

There are a few important differences between our
problem and the quantum circuit problem.

1. Quantum circuits do not have fanouts. Thus, one of
our operations does not have a quantum analog.

2. All quantum gates have the same number of outputs
as inputs, and therefore all of the matrices are square.
This is usually not the case for our problem.

3. The matrix elements in our case are real, while they
may be complex in the quantum circuit case. On
the other hand, our matrices do not have to be real-
unitary (a.k.a. orthogonal) – the only requirement is
that all elements in every column add up to one.

4. Our computation differs greatly from the operation
of quantum circuits in the last step. Quantum mea-
surement is applied after a quantum circuit, but we
use an unrelated operation to calculate the error
probability from the probabilistic transfer matrix.

The matrices in both our problem and the quantum cir-
cuit problem are double-exponential in size with respect
to the number of inputs and outputs. This leads to obvi-
ous scalability concerns for numerical methods. However,
these concerns are already being addressed in the field
of simulation of quantum circuit with BDD-based tech-
niques [3, 7] which we hope to adapt to our domain. To
simulate a quantum circuit, one starts with an input vector
and computes an output vector. Quantum measurement
— the last step, irrelevant to our work — is simulated
by computing the probabilities of all possible outcomes.
The simulation of quantum circuits [3, 7] is important, be-
cause, among other things, it provides a method to eval-
uate designs prior to implementation. A recent proposal
to deal with the scalability problem detects and eliminates
common arithmetic sub-expressions, drastically simplify-
ing the computation [7]. Computationally, this approach
is based on Binary Decision Diagrams, particularly the
QuIDD datastructure adapted from Algebraic Decision
Diagrams (ADDs). All matrices and vectors are repre-
sented by decision diagrams and relevant operations are
performed using DD traversals. This approach appears
applicable to our problem as well, with the caveat that
we must develop a new BDD-based operation to model
fanout. This is one of directions of on-going work.

5 Conclusions and On-going Work
This work is preliminary, and we are investigating several
further directions. These include more detailed analyses
of the analogy with quantum circuit simulation.

Through the adaptation of the QuIDD Pro quantum cir-
cuit simulator [7] we hope to significantly improve the
performance of our basic method. We also exploring ways
to simplify the calculations by using approximations at
critical stages, while still preserving the integrity of the
result.

We also plan incorporate our circuit reliability evalua-
tion method into synthesis algorithms, particularly fault-
tolerant synthesis methods acting on encoded inputs and
outputs. This has the potential of significantly improving
circuit reliability.

A better understanding of fault-tolerant logic may be
possible by analytical means. For example, one somewhat
obvious property we’ve observed is that long narrow cir-
cuits tend to be more susceptible to gate faults than short
wide ones. Further studies of error properties of logic
circuits, e.g., trees, may lead to new circuit optimization
strategies and heuristics usable during synthesis.

References
[1] T. M. Austin. “DIVA: A Dynamic Approach to

Microprocessor Verification,”Journal of Instruction
Level Parallelism, May 2000.

[2] S. C. Goldstein and M. Budiu. “NanoFabrics: Sparial
Computing Using Molecular Electronics,”Intl. Symp.
on Comp. Arch., June 2001.

[3] D. Greve. “QDD: a quantum computer emulation li-
brary,” http://home.plutonium.net/˜dagreve/qdd.html

[4] S. Kim and A. K. Somani. “Soft error sensitivity
characterization for microprocessor dependability en-
hancement strategy,”Proc. Intl. Conf. on Dependable
Systems and Networks, 2002.

[5] P. K. Lala.Self-Checking and Fault-Tolerant Digital
Design. Academic Press, Inc., 2001.

[6] M. A. Nielsen and I. L. Chuang.Quantum Compu-
tation and Quantum Information. Cambridge Univ.
Press, 2000.

[7] G. F. Viamontes, M. Rajagopalan, I. L. Markov, and
J. P. Hayes. “Gate-level Simulation of Quantum Cir-
cuits,” Proc. ASPDAC 2003, pp. 295-301.


