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Fig. 3. An optimal testing tree for Example 3 

TABLE I1 
COMPUTATION DATA FOR EXAMPLE 3 

I 

Fig. 3. The highlighted entries in the table correspond to the internal 
vertices created by the procedure BUILDTREE. The expected cost 
of this optimal testing tree is 7.6, as opposed to 8.0 for the testing 

Theorem 1: The algorithm constructs an optimal testing tree with 
time complexity O(n3)  and space complexity O(n2).  

Proof: For the time complexity, once we have computed the 
table of rly ’ I .  at Step 2 of the main routine, we construct a testing tree 
T:, with the recursive procedure BUILDTREE. This requires only 
O(n) operations because the binary tree T:” has exactly n internal 
vertices, implying that there are only n calls of the procedure where 
each call takes constant time. The most time-consuming part is Step 
1 of the main routine. At each iteration, it requires O ( j  - i )  = O(I) 
time to compute C,y2’ and constant time to compute all the other 
instructions. The outer loop is executed at most n times where the 
inner loop is executed at most n times for each iteration of the outer 
loop. Thus, the time complexity of the algorithm is O(n3) .  

For the space complexity, first observe that we need O(n2) space to 
store the input data. The size of the table for temporarily storing Cl:2’ 
and r,y2), 1 5 i 5 j 5 n, is O(n2) .  Note that at Step 1 of the main 
routine, each iteration of the outer loop requires the computation 
results from earlier iterations. Finally, we need O ( n )  space to store 
the output, an optimal testing tree. Thus, the total space complexity 
of the algorithm is O(n2) .  

For the correctness of the algorithm, note that from ( 2 )  and (3), 
Cl, = C:, corresponds to the ex ected cost of an optimal testing 
tree. It is obvious that r;j2) and Cl!j are correctly computed at Step 1 
of the main routine. To see that BUILDTREE( 1, n, 2) correctly con- 
structs a testing tree (that is, T:,)  with expected cost C:,, observe 
that the root U of TG constructed is labeled with [ i ,  J k  = rD, j ] ,  
D E { 1, 2 ) .  Then, the left (right) son of U will be a lea{ ver- 
tex labeled with Li (L,+l) if i = k ( j  = k ) ,  or, otherwise, the 
root of a subtree T j , k - ,  (T:+, ,  j )  labeled with [i, r; ,k-l ,  K - 11 

tree in Fig. 2 .  0 

R 

~ 
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( [ k  + 1, r;+l, , , j]) .  An inductive proof that BUILDTREE(i,j,D) 
0 correctly constructs Tf: should thus be evident. 

IV. CONCLUSIONS 

In this paper, we provided an efficient algorithm to construct testing 
procedures for optimally identifying a single defective unit in a series 
system. A series system such as a local loop of telephone networks 
is modeled as a sequence of units. The costs incurred by the testing 
process are quite general in that both traveling costs and testing costs 
are taken into consideration. Although the model assumes that only 
one defective unit can exist in the system, the testing tree still leads 
to the isolation of a defective unit if there exists two or more. This 
is because each time we proceed to a subtree, it is ensured that there 
is a defective unit corresponding to a vertex within that subtree. 
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Clock Skew Optimization 

JOHN P. FISHBURN 

Abstract-This paper investigates the problem of improving the per- 
formance of a synchronous digital system by adjusting the path delays 
of the clock signal from the central clock source to individual flip-flops. 
Through the use of a model to detect clocking hazards, two linear pro- 
grams are investigated: 1) Minimize the clock period, while avoiding 
clock hazards. 2) For a given period, maximize the minimum safety 
margin against clock hazard. These programs are solved for a simple 
example, and circuit simulation is used to contrast the operation of a 
resulting circuit with the conventionally clocked version. The method is 
extended to account for clock skew caused by relative variations in the 
drive capabilities of N-channel versus P-channel transistors in CMOS. 

Index Terms- Clocking, clock skew, finite-state machines, linear pro- 
gramming, optimization, synchronous circuits. 

I .  INTRODUCTION 
Synchronous circuit designers ordinarily try to eliminate clock 

skew, which may be d e h e d  as variations in the delays from the 
central clock source to the flip-flops (FF’s) of the system. This effort 
can involve equalization of wire lengths, careful screening of off-the- 
shelf parts, symmetric design of the distribution network, and design 
guidelines to eliminate skew due to process variations [ 11, [2] .  Clock 
skew can limit the clocking rate of a synchronous system or cause 
malfunction at any clock rate. Some static timing analyzers [3] detect 
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Fig. 1. Synchronous digital system with individual delays x ,  interposed be- 
tween the central clock source and the FF’s of the synchronous system. For 
each FF pair (FF,, FF,), bounds MIN(i, j )  and MAX(I, j )  are computed 
for the time-of-fight d,, from FF, to FF,. 

incorrect operation in the presence of skew, and allow user tuning 
of clock and data paths until correct operation is verified. 

In this paper, we examine the following question: How can a 
synchronous system be improved by adjusting the delays between the 
central clock and individual FF’s? We have two goals in mind: 1) To 
speed up the clock rate at which the circuit will function correctly. 2) 
For a given clocking rate, to maximize the margin of safety against 
circuit malfunction due to clocking hazards. The analysis will use, 
for simplicity, positive-edge-triggered D-flip-flops. 

11. CLOCK HAZARDS 

A .  Double-Clocking and  Zero-Clocking 
In 1965, Cotten [4] described a “data race” mechanism in which 

clock skew can cause a synchronous system to fail. In Fig. 1, if 
x ,  > x;  + d;, , then when the positive clock edge arrives at FFi, the 
data “race ahead” through the fast path, destroying the data at the 
input to FF, before the clock gets there. When the clock edge finally 
arrives at FF,, the wrong data are clocked through. Since the data 
are clocked through two FF’s with one clock edge, this has also been 
called doubleclocking. 

Analogously, zeroclocking can be used to designate the case when 
the data reach the FF too late relative to the next clock edge. This 
occurs in Fig. 1 when xi + dij > xj  + P ,  where P is the clock 
period. 

pair, as opposed to assuming overall delay bounds between banks of 
FF’s. This is necessary for the linear programs that follow. Fig. 1 
illustrates the basic components of the model: 

1) FF; receives the central clock delayed xi by its own delay ele- 
ment. A later section will outline a method for delay line construc- 
tion. Depending on the technology, there is some minimum delay 
MIN-DEL that can be generated: x; 2 MIN-DEL. We will assume 
some uncertainty in the clock delays. There will be two constants, 
0 < a 5 1 5 0, with the property that if the nominal clock delay is 
x; ,  then the actual clock delay x can vary from clock edge to clock 
edge, but must always fall in the interval axi 5 x 5 ox;. 

2) In order for a FF to operate correctly when the clock edge 
arrives at time x,  it is assumed that there are constants SETUP and 
HOLD such that correct input data must be present and stable during 
the time interval (x  - SETUP, x + HOLD). 

3) Timing conditions attach to each primary input and output. It 
is assumed for simplicity that these inputs and outputs are connected 
to FF’s outside the synchronous system, each of which is controlled 
by the central clock source through its own delay line. Thus, all 
timing paths begin and end at a FF, making unnecessary a separate 
terminology for the I/O constraints. FF, , . . ,FFK denote the inter- 
nal FF’s, and F F K + ~ ,  . . . , FFL denote the external FF’s. We do not 
have the ability to vary the clock delays to FF’s external to the syn- 
chronous system, so while x , ,  . . . ,XK are variables, x ~ + ~ ,  . . , x L  
are constants determined by the circuit and its environment. 

4) For 1 5 i ,  j 5 L ,  we compute lower and upper bounds 
MIN(i, j )  and MAX(i, j )  for the time that is required for a signal 
edge to propagate from FF; to FFj. Since it is possible that multiple 
paths exist from FFi to FFj, MIN(i, j )  and MAX(i, j )  must be com- 
puted as the minimum and maximum of these path delays. If no such 
path exists, we define MIN(i, j )  = x and MAX(i, j )  = -x for 
notational convenience. Although the data delay internal to the FF it- 
self could be included in SETUP and HOLD, we choose to include it 
in MIN and MAX. Besides simplifying the notation, this is desirable 
because the FF internal delay can be variable due to data-dependent 
delay, or due to the construction and output loading of the FF’s. 

To avoid double-clocking between FF, and FF,, the data edge 
generated at FFi by a clock edge must arrive at FF, no sooner than 
a period of time HOLD after the latest possible arrival of the same 
clock edge. The earliest that the clock edge can arrive at FF; is a x ; ,  
the fastest propagation from FF, to FFj is MIN(I’, j ) .  The latest 
arrival time of the clock at FF, is ox,. Thus, we have 

axi + MIN(i, j )  2 ox, + HOLD. ( 1 )  

To avoid zero-clocking, the data edge generated at FF; by a clock 
edge must arrive at FFj no later than SETUP amount of time before 
the earliest arrival of the next clock edge. The latest that the clock 
edge can arrive at FF, is oxi,  the slowest propagation from FF, to 
FFj is MAX(i, j ) ,  the clock period is P, and the earliest arrival time 
of the next clock edge at FFj is ax, + P .  Hence, 

ox; + SETUP + MAX(i, j )  5 ax, + P .  (2) 

111. Two LINEAR PROGRAMS 

A .  Minimize P Subject to Clocking Constraints 

If we desire to make the period P as short as possible while satis- 
fying the system of inequalities (1) and (2), and if the values SETUP, 
HOLD, a ,  0, MAX(i, j ) ,  MIN(i, j )  and thexi fori  = K + l , . , . , L  
are assumed to be constant, while P and the xi for i = 1, . , K are 
variable, then what we have is a linear program. In a standard form 
[6], this system is as follows: 

LP-SPEED: minimize P subject to 

B .  General Model for  Detecting Clock Hazards 
This section develops a set of inequalities that can tell us, in gen- 

eral, whether either of the above hazards is present. This develop- 
ment is similar to that found in [ l ]  and [ 5 ] ,  except that a minimum 
and maximum delay is calculated for every source/destination FF 

ax; -ox, 2 HOLD - MIN(i, j ) ,  

ax, - ox; + P 2 SETUP + MAX(i, j ) ,  

fori, j = 1,. ’ .  ,L; 

fori ,  j = 1, . . . , L ;  

Xi L MIN-DEL, fori = 1 , .  . . , K .  
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B .  Maximize Minimum Margin for Error in Clocking Constraints 

Clocking hazards can be particularly vexatious because they are 
potentially intermittent. A system on the verge of double-clocking, 
for instance, might pass system diagnostics but malfunction at unpre- 
dictable times due to fluctuations in ambient temperature or power 
supply voltage. One way to armor a system against this problem 
would be to increase the values of the constants SETUP and HOLD 
in LP-SPEED, at the cost of an increase in the clock period P. If, 
however, P is a k e d  quantity it would be desirable to maximize the 
minimum over all the constraints of the slack, or amount by which 
the inequality is satisfied. This converts the problem into a maxi- 
min problem [6], which can be stated as a linear program in the 
following way. Introduce a new variable M ,  which is added to each 
of the main constraint inequalities so that when it is maximized by 
the program, it will be the minimum slack over all the inequalities. 
P is now a constant. The variables M and x, , i = 1, . . . , K are to be 
determined. 

LP-SAFETY: maximize M subject to 

Q - - I  --D Q - - 2  --D Q - - 3  

A A 

axi -/3xj - M > H O L D - M I N ( i , j ) ,  f o r i , j =  l , . . . , L ;  

axj -oxi - M L S E T U P + M A X ( i ,  j ) - P ,  f o r i , j = l , . . . , L ;  

xi 2 MIN-DEL, fori = l , . . . , K  . 
An additional benefit of LP-SAFETY is that it maximizes the tol- 
erance of a system to variations in the speed of its parts, thereby 
lowering manufacturing costs. For a given reliability that is desired 
in a machine built from off-the-shelf parts, less stringent screening is 
required. For VLSI systems, LP-SAFETY would serve to improve 
yield in the face of process variations by centering the design away 
from clocking hazards. 

IV. A SIMPLE EXAMPLE 
At the current time, there exists no CAD tool that can automat- 

ically perform clock skew optimization. However, with the help of 
the circuit timing simulator ADVICE [8] and the PORT Linear Pro- 
gramming package [lo], a simple circuit has been optimized by hand. 
This is a 4-bit ripple-carry adder with accumulation and input regis- 
ter in 1.25-pm CMOS (Fig. 2). For simplicity, the carry-in is held 
at zero, and the carry-out is ignored. The four primary inputs Io-3 
feed the input FF's IFFo-3, whose outputs LI,,-3 are the A inputs 
of the adder. The four adder outputs So-3 are fed to the sum FF's 

A B  

SFFo-3, whose outputs LSo-3 are primary outputs. LSo-3 are also 
fed back into the B inputs of the adder. 

A .  Circuit Characterization 

Numerous ADVICE runs yielded estimates for MAX and MIN. It 
was found that under various conditions, the delay from IFF; or SFFi 
to SFF, was always bounded by MIN(i, j )  = 2.1 +1.5*(j -i) ns and 
MAX(i, j )  = 3.2+2.7*(j -i) ns. It was assumed that FF's external 
to the circuit had no clock delay. Delay from an external FF to an 
input FF was assumed to be exactly MAX = MIN = 6 ns, while 
from a sum FF to an external FF was exactly MAX = MIN = 3 ns. 
SETUP and HOLD were both set equal to 1 ns. The delay lines were 
constructed by the method described in Section VII-C, with fine- 
tuning by iterative simulations with the delay-lines driving their actual 
loads in the final circuit. The unskewed adder was the accumulator 
described above, with all eight FF's connected directly to the central 
clock source. The skewed adder was the same accumulator with 
delay lines interposed between the central clock and the individual 
FF's. 

0 

~ 

A B  A B  A B  

B .  Linear Program Solutions 
With the measured circuit parameters as given above, LP-SPEED 

and LP-SAFETY were solved by the PORT linear programming 
software. The program's solution, in nanoseconds, for LP-SPEED 
was as follows. The delays to IFFoT3 were 0.00, 0.05, 1.55, and 
3.05, and to SFFo-3 were 0.00, 0.05, 1.55, and 4.15. P was 8.15. 
For P = 13.0, the solution for LP-SAFETY was: The delays to 
IFFo-3 were 0.82, 1 S O ,  2.18, and 2.86, and to SFFo-3 were 0.00, 
0.68, 1.36, and 2.04. M ,  the safety margin, was 1.92. For both 
LP-SAFETY and LP-SPEED, the limiting constraints at the opti- 
mum points came from paths beginning or ending outside the circuit. 

C. Performance of the Resulting Circuit 
Since LP-SAFETY also speeds up the circuit, its solution was 

selected to construct the delay lines in the skewed adder. An ADVICE 
simulation at nominal conditions exhibited correct behavior by both 
adders. Temperature was 25OC, and the clock period was 10 ns. The 
clock was initially stopped then cycled for three ticks separated by 
the given clock period, and then stopped again. The sum register 
was initialized to O001, the input register to 11 11. The values 11 11, 
O001, and O001 were made available at the primary inputs for loading 
into the input register on the three ticks. This caused a signal to travel 
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the length of the carry chain on both the first and second clock ticks, 
with values oo00, 11 11, and oo00 appearing after the three ticks of 
the clock on the LS0-3 outputs. 

A series of simulations was then performed with progressively 
shorter clock periods, but holding constant the other conditions, to 
determine the minimum feasible clock period for each circuit. The 
unskewed adder worked correctly down to a clock period of 9.5 ns 
before zero-clocking. The skewed adder was able to work correctly 
at a clock period of 7.5 ns before zero-clocking, or 2.0 ns less than 
the critical path delay. 

How is it possible that the circuit can be run at a clock period 
less than the critical path delay? The answer, of course, is that a 
logic path can act as a delay line, containing more than one signal 
wavefront at a single instant. The simulation of the skewed adder 
showed that this was in fact happening in the carry chain at the 7.5 
ns clock period. This phenomenon has been exploited in a pipelining 
technique known as maximum-rate pipelining [ I ] ,  [5], [9], [131. 
In maximum-rate pipelining, the clock period is determined not by 
the maximum path delay through the logic, but by the difference 
between the maximum and minimum delays. When the clock runs at 
this maximum rate, the pipeline contains more bits of information 
than FF’s. For this reason, the clock in a maximum-rate pipeline 
cannot be single-stepped or even slowed down significantly. In the 
present scheme, by contrast, single-stepping is always possible. Any 
sequence P ,  , P z ,  . ’ of intervals between clock edges will drive the 
circuit correctly as long as each P, is large enough to satisfy (2). 

A second series of simulations stressed the adders in the direction 
of double-clocking by adding variable amounts of additional clock 
delay to SFF3 (in the case of the skewed adder, in addition to the 2.04 
ns already present). Other conditions were kept unchanged from the 
nominal case. With clock period held constant at 10 ns, the unskewed 
and skewed adders were able to tolerate 3.0 and 4.1 ns clock delay 
to SFF3, respectively, before double-clocking took place between 
IFF3 and SFF3. The extra resilience of the skewed adder was due to 
the fact that, in each bit position i, LP-SAFETY had assigned more 
clock delay to IFF, than to SFF,, thus centering the circuit away from 
double-clocking . 

The only delay uncertainty that does not equally affect the perfor- 
mance of conventionally clocked systems is that associated with the 
added clock delay lines. One scheme to generate these delays might 
be as follows. Between the central clock source and the FF’s, the 
distribution network would be similar to that in conventional clock 
distribution networks. Every effort would be made to equalize the 
clock delay in this network. This network would have a certain dis- 
tribution delay DD, and the linear program would have the constraints 
x ,  2 MIN-DEL replaced by x ,  2 DD + MIN-DELI. The variable 
delay elements (Section VII-C) would be inserted between the leaves 
of this network and the actual FF’s. This scheme allows the variable 
part of each delay to be in one spot (at the FF), avoiding the addi- 
tional uncertainties that would be introduced if it were distributed. 

In general, partitioning a system and optimizing the pieces sepa- 
rately can give suboptimal results. We saw this with the adder, where 
the speedup was limited not by the maximum-rate pipelining limit, 
but by boundary constraints. The best results can be obtained by en- 
compassing as much as possible in the synchronous system that is to 
be optimized. In general computer systems, the boundary might be 
pushed out to include all of the most tightly coupled, delay-critical 
parts of the system. At the boundary, additional FF’s could be used 
to decouple the optimized system from the external world. 

Adding FF’s to a system before optimizing might result in in- 
creased throughput as a result of a kind of “poor man’s pipelining.” 
For example, one might double the number of FF’s in a system by 
replacing every FF with two connected in series. The optimization 
procedure would tend to assign more delay to the lirst one of the 
pair. If conditions are right (i.e., if MIN is close to MAX in the right 
places), the end result would be to almost double the clock rate, and 
hence the throughput. The effect is similar to conventional pipelin- 
ing because although the transit time of a single datum through the 
system is not decreased, the throughput is increased. Conventional 
pipelining requires the designer to partition combinational logic into 
stages of comparable delay. In poor man’s pipelining, on the other 
hand, the clock skew serves to compensate for inequalities among 
stage delays. This relaxed constraint on stage delays might reduce 
the number of FF’s required by allowing partitions with fewer inter- 
partition signals. 

V. SOME PRACTICAL CONSIDERATIONS VI. CLOCK SKEW VERSUS RETIMINC 
A CAD tool that optimizes clock delays would include a static tim- 

ing analyzer that could compute MIN(i, j )  and MAX(i, j )  between 
an input i and an outputj of combinational logic. In this regard, most 
static timing analyzers that exist today are deficient in two respects. 
First, lower bounds on delay are usually not computed, although 
formulas for lower bounds on RC network delays are available [16]. 
Second, delays are not computed per input-output pair. Rather, the 
user specifies particular data-ready times at inputs, and the analyzer 
computes resulting output times. A static timing analyzer that can 
compute maximum delays in this manner could be used as a subrou- 
tine in an algorithm to compute MAX. For any input i ,  MAX(i, j )  
could be computed for all j by setting the data-ready time of input 
i to zero, and all other inputs to --x. MAX(i, j )  can then be as- 
signed the resulting data-ready time at output j .  A similar procedure 
could compute MIN using a static timing analyzer that could compute 
minimum delays. 

If a system is to be built from off-the-shelf parts, only one clock 
delay variable can be attached to all the FF’s controlled by a package 
pin. This may force a suboptimal solution, but the linear program can 
still correctly model the situation by coalescing into one the variables 
associated with these FF’s. 

Calculation of logic delays involves many uncertainties. The delays 
of both combinational logic and the clock distribution network are 
affected by process, temperature, noise, and voltage variation. Even 
if these physical parameters could be held constant, inaccuracies re- 
main in the models used by the static timing analyzer. These uncer- 
tainties limit the performance that can be obtained from optimizing 
clock delays. It should be stressed, however, that these uncertainties 
have been explicitly taken into account in the linear programs pre- 
sented here, through the use of upper and lower bounds on delay. 

As Fig. 3 illustrates, adding clock delay to an FF has an effect sim- 
ilar to movement of the FF backwards across combinational-logic 
module boundaries [I 11. This movement, called retiming, can be 
controlled by a mixed-integer linear program [ 121 to minimize clock 
period. In this sense, clock skew and retiming are continuous and 
discrete optimizations with the same effect. Although Fig. 3 illus- 
trates a situation in which the designer can choose between the two 
transformations, the two methods can in general complement each 
other: 

1) Since retiming moves FF’s across discrete (and perhaps large) 
amounts of logic delay, the resulting system can still benefit from 
(smaller amounts of) clock skew. 

2) Retiming to minimize clock period may cause an unacceptable 
increase in the number of FF’s. Retiming to minimize the number 
of FF’s [12] may be preferred if speed can be bought back more 
cheaply with clock skew. 

3) Retiming does not address the problem of double-clocking or 
process-dependent timing variation (although presumably it could be 
extended to do so). 

4) Efficient linear programming software packages are widely avail- 
able, but mixed-integer linear programming packages are not. 

5)  FF’s whose inputs are the primary inputs of a system can be 
skewed but not retimed. 

6) FF’s integrated with combinational logic in off-the-shelf parts 
can be skewed (in tandem, if controlled by a single pin) but not 
retimed. 

VII. PROCESS-DEPENDENT CLOCK SKEW IN VLSI 

It is assumed in this section that the synchronous system to be op- 
timized is completely contained on a single chip. As has been men- 

s 
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Fig. 3.  Retiming and clock delay transformations applied to the same cir- 
cuit. 

tioned, the model for detecting clock hazards has a built-in allowance 
for uncertainty in both logic and clock delays. This allowance and 
the design centering given by LP-SAFETY can make a system more 
robust in the face of delay variations. Unfortunately, this allowance 
is more conservative than necessary for some of the sources of delay 
variance. For example, the speed of logic gates can vary consider- 
ably due to unavoidable variations in the manufacturing process. But 
a single silicon chip will tend to have very little process variation 
across its surface. For example in CMOS, the drive capability of a 
fixed-size N-channel or P-channel MOS transistor (NFET or PFET) 
varies insignificantly as a function of its position on the chip. The 
clock hazard model, on the other hand, allows the delay of a fixed- 
size logic gate with k e d  output load to vary from place to place, and 
even from clock edge to clock edge. A more reasonable model would 
account explicitly for process variation, and restrict the uncertainties 
modeled by gate delays to the more nearly random causes, such as 
temperature variation or noise. We will now briefly sketch how the 
linear programs might be modified to take into account process vari- 
ation. 

A .  Uniform Variation of Gate Delays 
If all the gate delays on a chip vary uniformly, then there is no 

problem. It is easily seen that if a chip is free of clock hazards, if the 
delays of all the gates on a chip increase or decrease by some factor, 
and if the clock rate changes by the same factor, then the resulting 
chip will also be free of clock hazards. 

B .  Independent Variance of PFET and NFET Drive Capability 
in CMOS 

A more complicated situation occurs in CMOS, where the current 
drive of NFET’s varies somewhat independently of the current drive 
of PFET’s. Shoji [2] solves the problem of the resulting clock skew 
in CMOS VLSI by means of a more detailed accounting and control 
of the sources of clock delay. We will call this the “NP-matched- 
clock solution. ” Instead of assigning a single delay xi to the passage 
of an input-rising edge through a given chain of inverters i in the 
clock distribution network, the delay is separated into two parts: the 
pulldown delay ni and the pullup delay pi. ni is the sum of the delays 
of the odd inverters in the chain, each of whose NFET’s is pulling 
down its output, and pi is the sum of the delays of the even inverters, 
each of whose PFET’s is pulling up its output. The delay of a gate 
is defined to be the difference in time between when the input and 
output cross 50% of voltage swing. Rather than size the transistors 
in all the chains to equalize ni +pi, as is done conventionally, a more 
stringent matching is performed. The transistors in all the chains are 
sized to make all the ni equal, and to simultaneously make all the p; 
equal. The result is that all the chain delays track each other in the 

face of independent variance in the NFET and PFET current drive. 
If the NFET and PFET current drives change by factors of ND and 
PD, respectively, all the chain delays remain equal: 

n; Pi 
ND+PD- (4) 

Many ADVICE runs for a 1.75-pm CMOS process showed [2] that 
(4) was reasonably accurate as long as the pullup and pulldown delays 
were kept balanced by satisfying the inequalities 

0.35 5 ~ pi 5 0 . 5  
n; +Pi 

which are equivalent to the linear inequalities n, -pI 2 0 and 13pl - 
7n, 2 0. 

By replacing the clock delay variables x, with the pulldown and 
pullup variables n, and p,, we can modify LP-SAFETY to take 
into account the NFET/PFET process variation. The resulting pro- 
gram, called CMOS-LP-SAFETY, will allow a finer control over the 
generation of clock delay, since n,  and p ,  are controlled separately, 
rather than their sum. A similar transformation can be used to convert 
LP-SPEED into a program CMOS-LP-SPEED that minimizes clock 
period while avoiding clock hazards across all CMOS processes. It 
is necessary to sample the NFET/PFET process parameter space at a 
finite number of points: ND takes on A values ND, , ND2, . . . , NDA , 
and PD independently takes on B values PDI , PD;? , . . . , PDB. Each 
sample (a ,  b)  can be considered a separate process, and is charac- 
terized by its NFET and PFET relative drive parameters, ND, and 
PDb. In [2 ] ,  for example, the process parameter space is broken up 
into nine processes, with ND taking on the values 0.556, 1.OO0, and 
1.730, and PD independently taking on the values 0.620, 1 .OO0, and 
1.630. 

The constraint inequalities for CMOS-LP-SAFETY can now be 
written down by repeating the constraint inequalities of LP-SAFETY 
for each process. Since SETUP, HOLD, MAX, and MIN will 
have different values in different processes, they are now func- 
tions of a and b: SETUP(a, b) ,  HOLD(a, b), MAX(i, j ,  a ,  b)  and 
MIN(i, j ,  a ,  b). MIN-DEL will be replaced by minimums for the 
delay line pulldown and pullup delays MIN-DELD and MIN-DELu. 
For a given P ,  we wish to maximize M by adjusting the pulldown 
and pullup variables n, and p, , for i = 1,.  . . , K :  

CMOS-LP-SAFETY: maximize M subject to 

-M 2 HOLD(a, b)  - MIN(i, j ,  a ,  b)  (6) 
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Fig. 4. Delay lines with two ( o ) ,  four (+), and six ( x )  inverters plotted 
with respect to (a) pullup versus pulldown delays, and (b) pullup delay 
versus output rise time. 

- M 2 SETUP(a, b) + MAX(i, j ,  a, 6) - P 

forallprocesses(a,b)andfori,j = l ; . . ,L ;  

(7) 

n; 2 MIN-DELD and p ;  2 MIN-DELu , 

n; -pr >Oand13p, -7nr 20, 

fori = 1, . . . , K ;  

fori = l , . . . , X  

Both CY and fi in the above program can be much closer to 1 than their 
counterparts in the original LP-SAFETY program, since they no 
longer have to account for process variation in the clock delay lines. 
If in fact CY = p = 1, and as long as MIN(i, j ,  a, b) 2 HOLD(a, b) 
for all processes (a, b) and FF's i and j ,  and if P is big enough, 
the feasible region of CMOS-LP-SAFETY is nonempty. Simply set 
all the pulldown delays n; equal to a single nonnegative constant, 
and all pullup delays pi to some other nonnegative constant, such 
that inequality (5) is satisfied. This equalization of pulldown and 
pullup delays across all clock delay lines is in fact the NP-matched- 
clock solution. Unlike the NP-matched clock solution, the solution to 
CMOS-LP-SAFETY does not necessarily have the property that all 
clock delays track each other across all process variations. However, 

both the solution to CMOS-LP-SAFETY and the NP-matched-clock 
solution are in the feasible region of CMOS-LP-SAFETY, and so 
both represent solutions that avoid clocking hazards in the face of all 
NFET/PFET process variations. In general, however, the solution 
to CMOS-LP-SAFETY enjoys a greater margin-of-safety M ,  and 
hence is relatively more immune to other kinds of delay variation. 
Likewise, the solution to CMOS-LP-SPEED allows a higher clock 
rate than the NP-matched-clock solution. 

C. Construction of Clock Delay Lines with Given Pullup and 
Pulldown Delays 

This section demonstrates the construction of delay lines in 1.25- 
pm CMOS with various values of n and p, the pulldown and pullup 
delays. It is not claimed that this method is in any sense optimal. A 
more refined procedure involving transistor sizing has been investi- 
gated [7] .  The purpose here is simply to demonstrate that the range of 
achievable values is continuous above acceptably small lower bounds 
for n and p ,  and within bounds on n / p .  The delay line consists of a 
chain of an even number of inverters, with a capacitor attached to the 
output of each of the lirst two inverters. The inverters are identical in 
size. This size is made large enough to reduce to an acceptable level 
the delay variation due to data-dependent capacitance variation in the 
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FF. The inverter PFETiNFET size ratio was set to equalize pullup 
and pulldown delays. The capacitor is constructed from the gate of a 
FET, with source and drain tied to ground. If only the total delay is 
to be controlled. then only the capacitor on the 6rst inverter is neces- 
sary. Inverter chains with two, four, and six inverters were simulated 
by ADVICE, with each capacitor constructed with FET gate areas 
taking on the values 0, 100, . . . ,900 pm2. Each simulation measured 
not only n and p ,  but also the rise time (time from crossing 10% 
to 90% of voltage swing) of the delay line output. Rise time is of 
interest because too large a value can increase FF internal delay. Fig. 
4(a) plots these 300 delay lines with respect to the n and p values 
that were achieved. Fig. 4(b) plots the delay lines with respect to p 
and the rise time of the delay line output, for the 30 delay lines with 
maximum capacitance attached to the 6rst inverter. With two invert- 
ers, the delay line exhibits quite a large variation in rise time, as 
the second capacitance is varied. Depending on the technology and 
application, this might not be acceptable, and it may be necessary to 
use at least four inverters. Four inverters with no extra capacitance 
yield n = 0.58 and p = 0.62 ns. 

VIII. CONCLUSIONS A N D  DIRECTIONS FOR FUTURE RESEARCH 
Inequalities (1) and (2) govern the correct operation of syn- 

chronous systems. The conventional approach of eliminating clock 
skew is a feasible point of the linear programs generated by these 
inequalities. In general, however, this point is neither the fastest nor 
the safest. These can be discovered by solving the linear programs. 
The optimized system can be constructed with little extra cost, and 
will provide faster and more reliable operation than a conventionally- 
clocked system. 

It is not known how fast the number of constraints grows with 

the number of FF’s, but for practical circuits may be much smaller. 
If the linear program becomes too large, it may become necessary 
to investigate solution procedures that take advantage of the special 
form of the constraints. 

The current approach should be extended to higher performance 
clocking schemes, such as one-phase level-sensitive latches [l], [5]. 
This higher performance brings with it an increased susceptibility to 
double-clocking, but the current approach explicitly guards against 
this danger. 

Ideally. all variables should be considered jointly when optimizing 
a design. Although this is usually impossible, progress is made when 
two or more formerly separate optimization steps are joined into one. 
Clock skew and retiming are both of a linear character. It is likely 
that efficient procedures could be given for optimizing systems by 
jointly considering both sets of variables. 

A third linear optimization, insertion of delay lines in combina- 
tional logic, has also been studied [13]. Although this work was in 
the context of maximum-rate pipelining, logic delay lines can provide 
additional safety margin against double-clocking, as well as enhance 
the ability of clock skew to reduce the clock period of a single- 
steppable machine, by reducing MAX(i, j )  - MIN(i, j ) .  

Transistor sizing in CMOS has been shown [14] to be a posyno- 
m i d  [ 151 programming problem. Posynomial programs, though gen- 
erally nonlinear, can always be transformed into convex programs, 
and thus enjoy the property that a local minimum is guaranteed to 
be a global minimum. Unfortunately, when both transistor sizes and 
clock delays are varied, the result is a signomial program [15]. A 
signomial program is not necessarily equivalent to a convex program. 
A proof of equivalence for this problem would open up the possibil- 
ity of efficiently optimizing all four classes of variables jointly: clock 
delays. FF positions, logic delay lines, and logic-gate transistor sizes. 
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Performance Analysis of a Message-Oriented Knowledge-Base 

WANG-CHAN WONG, TATSUYA SUDA, AND 

LUBOMIR BIC 

Abstruct- We present a message-driven model for function-free Horn 
logic, where the knowledge base is represented as a network of logical 
processing elements communicating with one another exclusively through 
messages. The lack of centralized control and centralized memory makes 
this model suitable for implementation on a highly-parallel asynchronous 
computer architecture. 
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