
I

I
r

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990

Fig. 3. An optimal testing tree for Example 3

TABLE I1
COMPUTATION DATA FOR EXAMPLE 3

I

Fig. 3. The highlighted entries in the table correspond to the internal
vertices created by the procedure BUILDTREE. The expected cost
of this optimal testing tree is 7.6, as opposed to 8.0 for the testing

Theorem 1: The algorithm constructs an optimal testing tree with
time complexity O(n3) and space complexity O(n2).

Proof: For the time complexity, once we have computed the
table of rly ’ I . at Step 2 of the main routine, we construct a testing tree
T:, with the recursive procedure BUILDTREE. This requires only
O(n) operations because the binary tree T:” has exactly n internal
vertices, implying that there are only n calls of the procedure where
each call takes constant time. The most time-consuming part is Step
1 of the main routine. At each iteration, it requires O (j - i) = O(I)
time to compute C,y2’ and constant time to compute all the other
instructions. The outer loop is executed at most n times where the
inner loop is executed at most n times for each iteration of the outer
loop. Thus, the time complexity of the algorithm is O(n3) .

For the space complexity, first observe that we need O(n2) space to
store the input data. The size of the table for temporarily storing Cl:2’
and r,y2), 1 5 i 5 j 5 n, is O(n2) . Note that at Step 1 of the main
routine, each iteration of the outer loop requires the computation
results from earlier iterations. Finally, we need O (n) space to store
the output, an optimal testing tree. Thus, the total space complexity
of the algorithm is O(n2) .

For the correctness of the algorithm, note that from (2) and (3),
Cl, = C:, corresponds to the ex ected cost of an optimal testing
tree. It is obvious that r;j2) and Cl!j are correctly computed at Step 1
of the main routine. To see that BUILDTREE(1, n, 2) correctly con-
structs a testing tree (that is, T:,) with expected cost C:,, observe
that the root U of TG constructed is labeled with [i , J k = rD, j] ,
D E { 1, 2) . Then, the left (right) son of U will be a lea{ ver-
tex labeled with Li (L,+l) if i = k (j = k) , or, otherwise, the
root of a subtree T j , k - , (T:+, , j) labeled with [i, r; ,k-l , K - 11

tree in Fig. 2 . 0

R

~

0018-9340/90/07OO-O945$01 .OO 0 1990 IEEE

945

([k + 1, r;+l, , , j]) . An inductive proof that BUILDTREE(i,j,D)
0 correctly constructs Tf: should thus be evident.

IV. CONCLUSIONS

In this paper, we provided an efficient algorithm to construct testing
procedures for optimally identifying a single defective unit in a series
system. A series system such as a local loop of telephone networks
is modeled as a sequence of units. The costs incurred by the testing
process are quite general in that both traveling costs and testing costs
are taken into consideration. Although the model assumes that only
one defective unit can exist in the system, the testing tree still leads
to the isolation of a defective unit if there exists two or more. This
is because each time we proceed to a subtree, it is ensured that there
is a defective unit corresponding to a vertex within that subtree.

REFERENCES
[l]

[2]

[3]

R. Rey, “Engineering and operations in the Bell Systems,” AT&T Bell
Labs., Murray Hill, NJ, 1983.
A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of
Computer Algorithms.
R. Cartwright, “4-TEL automated subscriber line test system,” in
Proc. 1982 Int. Symp. Subscriber Loops Syst., Toronto, Ont.,
Canada, Sept. 1982.
M. Garey and F. Hwang, “Isolating a single defective using group
testing,” J . Amer. Statist. Ass., vol. 69, no. 345, pp. 151-153, Mar.
1974.
D. Siewiorek and R. Swarz, The Theory and Practice of Reliable
System Design.

Reading, MA: Addison-Wesley, 1974.

[4]

[5]
Bedford, MA: Digital, 1982.

Clock Skew Optimization

JOHN P. FISHBURN

Abstract-This paper investigates the problem of improving the per-
formance of a synchronous digital system by adjusting the path delays
of the clock signal from the central clock source to individual flip-flops.
Through the use of a model to detect clocking hazards, two linear pro-
grams are investigated: 1) Minimize the clock period, while avoiding
clock hazards. 2) For a given period, maximize the minimum safety
margin against clock hazard. These programs are solved for a simple
example, and circuit simulation is used to contrast the operation of a
resulting circuit with the conventionally clocked version. The method is
extended to account for clock skew caused by relative variations in the
drive capabilities of N-channel versus P-channel transistors in CMOS.

Index Terms- Clocking, clock skew, finite-state machines, linear pro-
gramming, optimization, synchronous circuits.

I . INTRODUCTION
Synchronous circuit designers ordinarily try to eliminate clock

skew, which may be d e h e d as variations in the delays from the
central clock source to the flip-flops (FF’s) of the system. This effort
can involve equalization of wire lengths, careful screening of off-the-
shelf parts, symmetric design of the distribution network, and design
guidelines to eliminate skew due to process variations [11, [2] . Clock
skew can limit the clocking rate of a synchronous system or cause
malfunction at any clock rate. Some static timing analyzers [3] detect

Manuscript received September 9, 1987; revised March 31, 1988 and June

The author is with AT&T Bell Laboratories, Murray Hill, NJ 07974.
IEEE Log Number 9034544.

6 , 1988.

946 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990

D Q

COMBINATIONAL LOGIC

PRIMARY 3
OUTPUTS .

r ’ dii

PRIMARY E INPUTS

Fig. 1. Synchronous digital system with individual delays x , interposed be-
tween the central clock source and the FF’s of the synchronous system. For
each FF pair (FF,, FF,), bounds MIN(i, j) and MAX(I, j) are computed
for the time-of-fight d,, from FF, to FF,.

incorrect operation in the presence of skew, and allow user tuning
of clock and data paths until correct operation is verified.

In this paper, we examine the following question: How can a
synchronous system be improved by adjusting the delays between the
central clock and individual FF’s? We have two goals in mind: 1) To
speed up the clock rate at which the circuit will function correctly. 2)
For a given clocking rate, to maximize the margin of safety against
circuit malfunction due to clocking hazards. The analysis will use,
for simplicity, positive-edge-triggered D-flip-flops.

11. CLOCK HAZARDS

A . Double-Clocking and Zero-Clocking
In 1965, Cotten [4] described a “data race” mechanism in which

clock skew can cause a synchronous system to fail. In Fig. 1, if
x , > x; + d;, , then when the positive clock edge arrives at FFi, the
data “race ahead” through the fast path, destroying the data at the
input to FF, before the clock gets there. When the clock edge finally
arrives at FF,, the wrong data are clocked through. Since the data
are clocked through two FF’s with one clock edge, this has also been
called doubleclocking.

Analogously, zeroclocking can be used to designate the case when
the data reach the FF too late relative to the next clock edge. This
occurs in Fig. 1 when xi + dij > xj + P , where P is the clock
period.

pair, as opposed to assuming overall delay bounds between banks of
FF’s. This is necessary for the linear programs that follow. Fig. 1
illustrates the basic components of the model:

1) FF; receives the central clock delayed xi by its own delay ele-
ment. A later section will outline a method for delay line construc-
tion. Depending on the technology, there is some minimum delay
MIN-DEL that can be generated: x; 2 MIN-DEL. We will assume
some uncertainty in the clock delays. There will be two constants,
0 < a 5 1 5 0, with the property that if the nominal clock delay is
x; , then the actual clock delay x can vary from clock edge to clock
edge, but must always fall in the interval axi 5 x 5 ox;.

2) In order for a FF to operate correctly when the clock edge
arrives at time x, it is assumed that there are constants SETUP and
HOLD such that correct input data must be present and stable during
the time interval (x - SETUP, x + HOLD).

3) Timing conditions attach to each primary input and output. It
is assumed for simplicity that these inputs and outputs are connected
to FF’s outside the synchronous system, each of which is controlled
by the central clock source through its own delay line. Thus, all
timing paths begin and end at a FF, making unnecessary a separate
terminology for the I/O constraints. FF, , . . ,FFK denote the inter-
nal FF’s, and F F K + ~ , . . . , FFL denote the external FF’s. We do not
have the ability to vary the clock delays to FF’s external to the syn-
chronous system, so while x , , . . . ,XK are variables, x ~ + ~ , . . , x L
are constants determined by the circuit and its environment.

4) For 1 5 i , j 5 L , we compute lower and upper bounds
MIN(i, j) and MAX(i, j) for the time that is required for a signal
edge to propagate from FF; to FFj. Since it is possible that multiple
paths exist from FFi to FFj, MIN(i, j) and MAX(i, j) must be com-
puted as the minimum and maximum of these path delays. If no such
path exists, we define MIN(i, j) = x and MAX(i, j) = -x for
notational convenience. Although the data delay internal to the FF it-
self could be included in SETUP and HOLD, we choose to include it
in MIN and MAX. Besides simplifying the notation, this is desirable
because the FF internal delay can be variable due to data-dependent
delay, or due to the construction and output loading of the FF’s.

To avoid double-clocking between FF, and FF,, the data edge
generated at FFi by a clock edge must arrive at FF, no sooner than
a period of time HOLD after the latest possible arrival of the same
clock edge. The earliest that the clock edge can arrive at FF; is a x ; ,
the fastest propagation from FF, to FFj is MIN(I’, j) . The latest
arrival time of the clock at FF, is ox,. Thus, we have

axi + MIN(i, j) 2 ox, + HOLD. (1)

To avoid zero-clocking, the data edge generated at FF; by a clock
edge must arrive at FFj no later than SETUP amount of time before
the earliest arrival of the next clock edge. The latest that the clock
edge can arrive at FF, is oxi, the slowest propagation from FF, to
FFj is MAX(i, j) , the clock period is P, and the earliest arrival time
of the next clock edge at FFj is ax, + P . Hence,

ox; + SETUP + MAX(i, j) 5 ax, + P . (2)

111. Two LINEAR PROGRAMS

A . Minimize P Subject to Clocking Constraints

If we desire to make the period P as short as possible while satis-
fying the system of inequalities (1) and (2), and if the values SETUP,
HOLD, a , 0, MAX(i, j) , MIN(i, j) and thexi fori = K + l , . , . , L
are assumed to be constant, while P and the xi for i = 1, . , K are
variable, then what we have is a linear program. In a standard form
[6], this system is as follows:

LP-SPEED: minimize P subject to

B . General Model for Detecting Clock Hazards
This section develops a set of inequalities that can tell us, in gen-

eral, whether either of the above hazards is present. This develop-
ment is similar to that found in [l] and [5] , except that a minimum
and maximum delay is calculated for every source/destination FF

ax; -ox, 2 HOLD - MIN(i, j) ,

ax, - ox; + P 2 SETUP + MAX(i, j) ,

fori, j = 1,. ’ . ,L;

fori , j = 1, . . . , L ;

Xi L MIN-DEL, fori = 1 , . . . , K .

lEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990 947

IFF, IFF I

'I

IFF IFF

--D Q - - 0 - -D

A A

B . Maximize Minimum Margin for Error in Clocking Constraints

Clocking hazards can be particularly vexatious because they are
potentially intermittent. A system on the verge of double-clocking,
for instance, might pass system diagnostics but malfunction at unpre-
dictable times due to fluctuations in ambient temperature or power
supply voltage. One way to armor a system against this problem
would be to increase the values of the constants SETUP and HOLD
in LP-SPEED, at the cost of an increase in the clock period P. If,
however, P is a k e d quantity it would be desirable to maximize the
minimum over all the constraints of the slack, or amount by which
the inequality is satisfied. This converts the problem into a maxi-
min problem [6], which can be stated as a linear program in the
following way. Introduce a new variable M , which is added to each
of the main constraint inequalities so that when it is maximized by
the program, it will be the minimum slack over all the inequalities.
P is now a constant. The variables M and x, , i = 1, . . . , K are to be
determined.

LP-SAFETY: maximize M subject to

Q - - I --D Q - - 2 --D Q - - 3

A A

axi -/3xj - M > H O L D - M I N (i , j) , f o r i , j = l , . . . , L ;

axj -oxi - M L S E T U P + M A X (i , j) - P , f o r i , j = l , . . . , L ;

xi 2 MIN-DEL, fori = l , . . . , K .
An additional benefit of LP-SAFETY is that it maximizes the tol-
erance of a system to variations in the speed of its parts, thereby
lowering manufacturing costs. For a given reliability that is desired
in a machine built from off-the-shelf parts, less stringent screening is
required. For VLSI systems, LP-SAFETY would serve to improve
yield in the face of process variations by centering the design away
from clocking hazards.

IV. A SIMPLE EXAMPLE
At the current time, there exists no CAD tool that can automat-

ically perform clock skew optimization. However, with the help of
the circuit timing simulator ADVICE [8] and the PORT Linear Pro-
gramming package [lo], a simple circuit has been optimized by hand.
This is a 4-bit ripple-carry adder with accumulation and input regis-
ter in 1.25-pm CMOS (Fig. 2). For simplicity, the carry-in is held
at zero, and the carry-out is ignored. The four primary inputs Io-3
feed the input FF's IFFo-3, whose outputs LI,,-3 are the A inputs
of the adder. The four adder outputs So-3 are fed to the sum FF's

A B

SFFo-3, whose outputs LSo-3 are primary outputs. LSo-3 are also
fed back into the B inputs of the adder.

A . Circuit Characterization

Numerous ADVICE runs yielded estimates for MAX and MIN. It
was found that under various conditions, the delay from IFF; or SFFi
to SFF, was always bounded by MIN(i, j) = 2.1 +1.5*(j -i) ns and
MAX(i, j) = 3.2+2.7*(j -i) ns. It was assumed that FF's external
to the circuit had no clock delay. Delay from an external FF to an
input FF was assumed to be exactly MAX = MIN = 6 ns, while
from a sum FF to an external FF was exactly MAX = MIN = 3 ns.
SETUP and HOLD were both set equal to 1 ns. The delay lines were
constructed by the method described in Section VII-C, with fine-
tuning by iterative simulations with the delay-lines driving their actual
loads in the final circuit. The unskewed adder was the accumulator
described above, with all eight FF's connected directly to the central
clock source. The skewed adder was the same accumulator with
delay lines interposed between the central clock and the individual
FF's.

0

~

A B A B A B

B . Linear Program Solutions
With the measured circuit parameters as given above, LP-SPEED

and LP-SAFETY were solved by the PORT linear programming
software. The program's solution, in nanoseconds, for LP-SPEED
was as follows. The delays to IFFoT3 were 0.00, 0.05, 1.55, and
3.05, and to SFFo-3 were 0.00, 0.05, 1.55, and 4.15. P was 8.15.
For P = 13.0, the solution for LP-SAFETY was: The delays to
IFFo-3 were 0.82, 1 S O , 2.18, and 2.86, and to SFFo-3 were 0.00,
0.68, 1.36, and 2.04. M , the safety margin, was 1.92. For both
LP-SAFETY and LP-SPEED, the limiting constraints at the opti-
mum points came from paths beginning or ending outside the circuit.

C. Performance of the Resulting Circuit
Since LP-SAFETY also speeds up the circuit, its solution was

selected to construct the delay lines in the skewed adder. An ADVICE
simulation at nominal conditions exhibited correct behavior by both
adders. Temperature was 25OC, and the clock period was 10 ns. The
clock was initially stopped then cycled for three ticks separated by
the given clock period, and then stopped again. The sum register
was initialized to O001, the input register to 11 11. The values 11 11,
O001, and O001 were made available at the primary inputs for loading
into the input register on the three ticks. This caused a signal to travel

948 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7, JULY 1990

the length of the carry chain on both the first and second clock ticks,
with values oo00, 11 11, and oo00 appearing after the three ticks of
the clock on the LS0-3 outputs.

A series of simulations was then performed with progressively
shorter clock periods, but holding constant the other conditions, to
determine the minimum feasible clock period for each circuit. The
unskewed adder worked correctly down to a clock period of 9.5 ns
before zero-clocking. The skewed adder was able to work correctly
at a clock period of 7.5 ns before zero-clocking, or 2.0 ns less than
the critical path delay.

How is it possible that the circuit can be run at a clock period
less than the critical path delay? The answer, of course, is that a
logic path can act as a delay line, containing more than one signal
wavefront at a single instant. The simulation of the skewed adder
showed that this was in fact happening in the carry chain at the 7.5
ns clock period. This phenomenon has been exploited in a pipelining
technique known as maximum-rate pipelining [I] , [5], [9], [131.
In maximum-rate pipelining, the clock period is determined not by
the maximum path delay through the logic, but by the difference
between the maximum and minimum delays. When the clock runs at
this maximum rate, the pipeline contains more bits of information
than FF’s. For this reason, the clock in a maximum-rate pipeline
cannot be single-stepped or even slowed down significantly. In the
present scheme, by contrast, single-stepping is always possible. Any
sequence P , , P z , . ’ of intervals between clock edges will drive the
circuit correctly as long as each P, is large enough to satisfy (2).

A second series of simulations stressed the adders in the direction
of double-clocking by adding variable amounts of additional clock
delay to SFF3 (in the case of the skewed adder, in addition to the 2.04
ns already present). Other conditions were kept unchanged from the
nominal case. With clock period held constant at 10 ns, the unskewed
and skewed adders were able to tolerate 3.0 and 4.1 ns clock delay
to SFF3, respectively, before double-clocking took place between
IFF3 and SFF3. The extra resilience of the skewed adder was due to
the fact that, in each bit position i, LP-SAFETY had assigned more
clock delay to IFF, than to SFF,, thus centering the circuit away from
double-clocking .

The only delay uncertainty that does not equally affect the perfor-
mance of conventionally clocked systems is that associated with the
added clock delay lines. One scheme to generate these delays might
be as follows. Between the central clock source and the FF’s, the
distribution network would be similar to that in conventional clock
distribution networks. Every effort would be made to equalize the
clock delay in this network. This network would have a certain dis-
tribution delay DD, and the linear program would have the constraints
x , 2 MIN-DEL replaced by x , 2 DD + MIN-DELI. The variable
delay elements (Section VII-C) would be inserted between the leaves
of this network and the actual FF’s. This scheme allows the variable
part of each delay to be in one spot (at the FF), avoiding the addi-
tional uncertainties that would be introduced if it were distributed.

In general, partitioning a system and optimizing the pieces sepa-
rately can give suboptimal results. We saw this with the adder, where
the speedup was limited not by the maximum-rate pipelining limit,
but by boundary constraints. The best results can be obtained by en-
compassing as much as possible in the synchronous system that is to
be optimized. In general computer systems, the boundary might be
pushed out to include all of the most tightly coupled, delay-critical
parts of the system. At the boundary, additional FF’s could be used
to decouple the optimized system from the external world.

Adding FF’s to a system before optimizing might result in in-
creased throughput as a result of a kind of “poor man’s pipelining.”
For example, one might double the number of FF’s in a system by
replacing every FF with two connected in series. The optimization
procedure would tend to assign more delay to the lirst one of the
pair. If conditions are right (i.e., if MIN is close to MAX in the right
places), the end result would be to almost double the clock rate, and
hence the throughput. The effect is similar to conventional pipelin-
ing because although the transit time of a single datum through the
system is not decreased, the throughput is increased. Conventional
pipelining requires the designer to partition combinational logic into
stages of comparable delay. In poor man’s pipelining, on the other
hand, the clock skew serves to compensate for inequalities among
stage delays. This relaxed constraint on stage delays might reduce
the number of FF’s required by allowing partitions with fewer inter-
partition signals.

V. SOME PRACTICAL CONSIDERATIONS VI. CLOCK SKEW VERSUS RETIMINC
A CAD tool that optimizes clock delays would include a static tim-

ing analyzer that could compute MIN(i, j) and MAX(i, j) between
an input i and an outputj of combinational logic. In this regard, most
static timing analyzers that exist today are deficient in two respects.
First, lower bounds on delay are usually not computed, although
formulas for lower bounds on RC network delays are available [16].
Second, delays are not computed per input-output pair. Rather, the
user specifies particular data-ready times at inputs, and the analyzer
computes resulting output times. A static timing analyzer that can
compute maximum delays in this manner could be used as a subrou-
tine in an algorithm to compute MAX. For any input i , MAX(i, j)
could be computed for all j by setting the data-ready time of input
i to zero, and all other inputs to --x. MAX(i, j) can then be as-
signed the resulting data-ready time at output j . A similar procedure
could compute MIN using a static timing analyzer that could compute
minimum delays.

If a system is to be built from off-the-shelf parts, only one clock
delay variable can be attached to all the FF’s controlled by a package
pin. This may force a suboptimal solution, but the linear program can
still correctly model the situation by coalescing into one the variables
associated with these FF’s.

Calculation of logic delays involves many uncertainties. The delays
of both combinational logic and the clock distribution network are
affected by process, temperature, noise, and voltage variation. Even
if these physical parameters could be held constant, inaccuracies re-
main in the models used by the static timing analyzer. These uncer-
tainties limit the performance that can be obtained from optimizing
clock delays. It should be stressed, however, that these uncertainties
have been explicitly taken into account in the linear programs pre-
sented here, through the use of upper and lower bounds on delay.

As Fig. 3 illustrates, adding clock delay to an FF has an effect sim-
ilar to movement of the FF backwards across combinational-logic
module boundaries [I 11. This movement, called retiming, can be
controlled by a mixed-integer linear program [121 to minimize clock
period. In this sense, clock skew and retiming are continuous and
discrete optimizations with the same effect. Although Fig. 3 illus-
trates a situation in which the designer can choose between the two
transformations, the two methods can in general complement each
other:

1) Since retiming moves FF’s across discrete (and perhaps large)
amounts of logic delay, the resulting system can still benefit from
(smaller amounts of) clock skew.

2) Retiming to minimize clock period may cause an unacceptable
increase in the number of FF’s. Retiming to minimize the number
of FF’s [12] may be preferred if speed can be bought back more
cheaply with clock skew.

3) Retiming does not address the problem of double-clocking or
process-dependent timing variation (although presumably it could be
extended to do so).

4) Efficient linear programming software packages are widely avail-
able, but mixed-integer linear programming packages are not.

5) FF’s whose inputs are the primary inputs of a system can be
skewed but not retimed.

6) FF’s integrated with combinational logic in off-the-shelf parts
can be skewed (in tandem, if controlled by a single pin) but not
retimed.

VII. PROCESS-DEPENDENT CLOCK SKEW IN VLSI

It is assumed in this section that the synchronous system to be op-
timized is completely contained on a single chip. As has been men-

s

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990 949

Fig. 3. Retiming and clock delay transformations applied to the same cir-
cuit.

tioned, the model for detecting clock hazards has a built-in allowance
for uncertainty in both logic and clock delays. This allowance and
the design centering given by LP-SAFETY can make a system more
robust in the face of delay variations. Unfortunately, this allowance
is more conservative than necessary for some of the sources of delay
variance. For example, the speed of logic gates can vary consider-
ably due to unavoidable variations in the manufacturing process. But
a single silicon chip will tend to have very little process variation
across its surface. For example in CMOS, the drive capability of a
fixed-size N-channel or P-channel MOS transistor (NFET or PFET)
varies insignificantly as a function of its position on the chip. The
clock hazard model, on the other hand, allows the delay of a fixed-
size logic gate with k e d output load to vary from place to place, and
even from clock edge to clock edge. A more reasonable model would
account explicitly for process variation, and restrict the uncertainties
modeled by gate delays to the more nearly random causes, such as
temperature variation or noise. We will now briefly sketch how the
linear programs might be modified to take into account process vari-
ation.

A . Uniform Variation of Gate Delays
If all the gate delays on a chip vary uniformly, then there is no

problem. It is easily seen that if a chip is free of clock hazards, if the
delays of all the gates on a chip increase or decrease by some factor,
and if the clock rate changes by the same factor, then the resulting
chip will also be free of clock hazards.

B . Independent Variance of PFET and NFET Drive Capability
in CMOS

A more complicated situation occurs in CMOS, where the current
drive of NFET’s varies somewhat independently of the current drive
of PFET’s. Shoji [2] solves the problem of the resulting clock skew
in CMOS VLSI by means of a more detailed accounting and control
of the sources of clock delay. We will call this the “NP-matched-
clock solution. ” Instead of assigning a single delay xi to the passage
of an input-rising edge through a given chain of inverters i in the
clock distribution network, the delay is separated into two parts: the
pulldown delay ni and the pullup delay pi. ni is the sum of the delays
of the odd inverters in the chain, each of whose NFET’s is pulling
down its output, and pi is the sum of the delays of the even inverters,
each of whose PFET’s is pulling up its output. The delay of a gate
is defined to be the difference in time between when the input and
output cross 50% of voltage swing. Rather than size the transistors
in all the chains to equalize ni +pi, as is done conventionally, a more
stringent matching is performed. The transistors in all the chains are
sized to make all the ni equal, and to simultaneously make all the p;
equal. The result is that all the chain delays track each other in the

face of independent variance in the NFET and PFET current drive.
If the NFET and PFET current drives change by factors of ND and
PD, respectively, all the chain delays remain equal:

n; Pi
ND+PD- (4)

Many ADVICE runs for a 1.75-pm CMOS process showed [2] that
(4) was reasonably accurate as long as the pullup and pulldown delays
were kept balanced by satisfying the inequalities

0.35 5 ~ pi 5 0 . 5
n; +Pi

which are equivalent to the linear inequalities n, -pI 2 0 and 13pl -
7n, 2 0.

By replacing the clock delay variables x, with the pulldown and
pullup variables n, and p,, we can modify LP-SAFETY to take
into account the NFET/PFET process variation. The resulting pro-
gram, called CMOS-LP-SAFETY, will allow a finer control over the
generation of clock delay, since n, and p , are controlled separately,
rather than their sum. A similar transformation can be used to convert
LP-SPEED into a program CMOS-LP-SPEED that minimizes clock
period while avoiding clock hazards across all CMOS processes. It
is necessary to sample the NFET/PFET process parameter space at a
finite number of points: ND takes on A values ND, , ND2, . . . , NDA ,
and PD independently takes on B values PDI , PD;? , . . . , PDB. Each
sample (a , b) can be considered a separate process, and is charac-
terized by its NFET and PFET relative drive parameters, ND, and
PDb. In [2] , for example, the process parameter space is broken up
into nine processes, with ND taking on the values 0.556, 1.OO0, and
1.730, and PD independently taking on the values 0.620, 1 .OO0, and
1.630.

The constraint inequalities for CMOS-LP-SAFETY can now be
written down by repeating the constraint inequalities of LP-SAFETY
for each process. Since SETUP, HOLD, MAX, and MIN will
have different values in different processes, they are now func-
tions of a and b: SETUP(a, b) , HOLD(a, b), MAX(i, j , a , b) and
MIN(i, j , a , b). MIN-DEL will be replaced by minimums for the
delay line pulldown and pullup delays MIN-DELD and MIN-DELu.
For a given P , we wish to maximize M by adjusting the pulldown
and pullup variables n, and p, , for i = 1,. . . , K :

CMOS-LP-SAFETY: maximize M subject to

-M 2 HOLD(a, b) - MIN(i, j , a , b) (6)

950 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990

2.0

,

1.5
PdUP
delay

P
(W

1 .o

0.5

0.0 j I I I I

0.0 0.5 1.0 1.5 2.0

(a)
pulldown delay n (ns)

x

x

X

x +

x+

X+

x+

0.5 1.0 1.5
output rise time (ns)

(b)

Fig. 4. Delay lines with two (o) , four (+), and six (x) inverters plotted
with respect to (a) pullup versus pulldown delays, and (b) pullup delay
versus output rise time.

- M 2 SETUP(a, b) + MAX(i, j , a, 6) - P

forallprocesses(a,b)andfori,j = l ; . . ,L ;

(7)

n; 2 MIN-DELD and p ; 2 MIN-DELu ,

n; -pr >Oand13p, -7nr 20,

fori = 1, . . . , K ;

fori = l , . . . , X

Both CY and fi in the above program can be much closer to 1 than their
counterparts in the original LP-SAFETY program, since they no
longer have to account for process variation in the clock delay lines.
If in fact CY = p = 1, and as long as MIN(i, j , a, b) 2 HOLD(a, b)
for all processes (a, b) and FF's i and j , and if P is big enough,
the feasible region of CMOS-LP-SAFETY is nonempty. Simply set
all the pulldown delays n; equal to a single nonnegative constant,
and all pullup delays pi to some other nonnegative constant, such
that inequality (5) is satisfied. This equalization of pulldown and
pullup delays across all clock delay lines is in fact the NP-matched-
clock solution. Unlike the NP-matched clock solution, the solution to
CMOS-LP-SAFETY does not necessarily have the property that all
clock delays track each other across all process variations. However,

both the solution to CMOS-LP-SAFETY and the NP-matched-clock
solution are in the feasible region of CMOS-LP-SAFETY, and so
both represent solutions that avoid clocking hazards in the face of all
NFET/PFET process variations. In general, however, the solution
to CMOS-LP-SAFETY enjoys a greater margin-of-safety M , and
hence is relatively more immune to other kinds of delay variation.
Likewise, the solution to CMOS-LP-SPEED allows a higher clock
rate than the NP-matched-clock solution.

C. Construction of Clock Delay Lines with Given Pullup and
Pulldown Delays

This section demonstrates the construction of delay lines in 1.25-
pm CMOS with various values of n and p, the pulldown and pullup
delays. It is not claimed that this method is in any sense optimal. A
more refined procedure involving transistor sizing has been investi-
gated [7] . The purpose here is simply to demonstrate that the range of
achievable values is continuous above acceptably small lower bounds
for n and p , and within bounds on n / p . The delay line consists of a
chain of an even number of inverters, with a capacitor attached to the
output of each of the lirst two inverters. The inverters are identical in
size. This size is made large enough to reduce to an acceptable level
the delay variation due to data-dependent capacitance variation in the

IEEE TRAMACTIONS OV COMPUTERS. VOL. 39, NO. 7. JULY 1990 95 1

FF. The inverter PFETiNFET size ratio was set to equalize pullup
and pulldown delays. The capacitor is constructed from the gate of a
FET, with source and drain tied to ground. If only the total delay is
to be controlled. then only the capacitor on the 6rst inverter is neces-
sary. Inverter chains with two, four, and six inverters were simulated
by ADVICE, with each capacitor constructed with FET gate areas
taking on the values 0, 100, . . . ,900 pm2. Each simulation measured
not only n and p , but also the rise time (time from crossing 10%
to 90% of voltage swing) of the delay line output. Rise time is of
interest because too large a value can increase FF internal delay. Fig.
4(a) plots these 300 delay lines with respect to the n and p values
that were achieved. Fig. 4(b) plots the delay lines with respect to p
and the rise time of the delay line output, for the 30 delay lines with
maximum capacitance attached to the 6rst inverter. With two invert-
ers, the delay line exhibits quite a large variation in rise time, as
the second capacitance is varied. Depending on the technology and
application, this might not be acceptable, and it may be necessary to
use at least four inverters. Four inverters with no extra capacitance
yield n = 0.58 and p = 0.62 ns.

VIII. CONCLUSIONS A N D DIRECTIONS FOR FUTURE RESEARCH
Inequalities (1) and (2) govern the correct operation of syn-

chronous systems. The conventional approach of eliminating clock
skew is a feasible point of the linear programs generated by these
inequalities. In general, however, this point is neither the fastest nor
the safest. These can be discovered by solving the linear programs.
The optimized system can be constructed with little extra cost, and
will provide faster and more reliable operation than a conventionally-
clocked system.

It is not known how fast the number of constraints grows with

the number of FF’s, but for practical circuits may be much smaller.
If the linear program becomes too large, it may become necessary
to investigate solution procedures that take advantage of the special
form of the constraints.

The current approach should be extended to higher performance
clocking schemes, such as one-phase level-sensitive latches [l], [5].
This higher performance brings with it an increased susceptibility to
double-clocking, but the current approach explicitly guards against
this danger.

Ideally. all variables should be considered jointly when optimizing
a design. Although this is usually impossible, progress is made when
two or more formerly separate optimization steps are joined into one.
Clock skew and retiming are both of a linear character. It is likely
that efficient procedures could be given for optimizing systems by
jointly considering both sets of variables.

A third linear optimization, insertion of delay lines in combina-
tional logic, has also been studied [13]. Although this work was in
the context of maximum-rate pipelining, logic delay lines can provide
additional safety margin against double-clocking, as well as enhance
the ability of clock skew to reduce the clock period of a single-
steppable machine, by reducing MAX(i, j) - MIN(i, j) .

Transistor sizing in CMOS has been shown [14] to be a posyno-
m i d [151 programming problem. Posynomial programs, though gen-
erally nonlinear, can always be transformed into convex programs,
and thus enjoy the property that a local minimum is guaranteed to
be a global minimum. Unfortunately, when both transistor sizes and
clock delays are varied, the result is a signomial program [15]. A
signomial program is not necessarily equivalent to a convex program.
A proof of equivalence for this problem would open up the possibil-
ity of efficiently optimizing all four classes of variables jointly: clock
delays. FF positions, logic delay lines, and logic-gate transistor sizes.

ACKNOWLEDGMENT
Thanks to E. Rosenberg for enlightening me about maxi-min pro-

grams. to N. Schryer and L. Kaufman for providing the PORT linear
programming software, and to J. Chandross, R. Finkel, L. Fishburn,

t

I circuit size. This number cannot be greater than twice the square of

J. Javitt, T. Szymanski, V. Visvanathan, S. Vogel and the four re-
viewers for helpful comments.

REFERENCES
[l] P. M. Kogge, The Architecture of Pipelined Computers. New

York: McGraw-Hill, 1981, pp. 21-39.
[2] M. Shoji, “Elimination of process-dependent clock skew in CMOS

VLSI.” IEEE J. Solid-State Circuits, vol. SC-21. no. 5 , vu. ..
875-880, Oct. 1986.
T. M. McWilliams, “Verification of timing constraints on large digital
systems,” J . Digital Syst., vol. 5 , no. 4, pp. 401-427, 1981.
L. W. Cotten, “Circuit implementation of high-speed pipeline sys-
tems,” in AFIPS Proc. 1965 Fall Joint Comput. Conf.. vol. 27,

M. J. Flynn and S. Waser, Introduction to Arithmetic for Digital
Systems Designers.
P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
New York: Academic, 1981.
P. V. Argade, ‘‘Sizing an inverter with a precise delay: Generation of
complementary signals with minimal skew and pulse width distortion
in CMOS,” IEEE Trans. Cornput.-Aided Design, vol. CAD-8, no.
I , pp. 33-40, Jan. 1989.
L. W. Nagel, “SPICE2: A computer program to simulate semiconduc-
tor circuits,” Memo ERL-M520, Univ. of California, Berkeley, May
9, 1975.
L. W. Cotten, “Maximum-rate pipeline systems,” in AFIPS Proc.
1969 Spring Joint Comput. Conf., vol. 34, pp. 581-586.
P. A. Fox and N. L. Schryer, “The PORT mathematical subroutine
library,” ACM Trans. Math. Software, vol. 4, no. 2, pp. 104-126,
June 1978.
L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of
VLSI Circuits. Reading, MA: Addison-Wesley, 1985, pp. 345-347.
C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” in Proc. Third Caltech Conf. Very Lorge
Scale Integration, R. Bryant, Ed., 1983, pp. 87-116.
B. C. Ekroot, “Optimization of pipelined processors by insertion of
combinational logic delay,” Ph.D. dissertation, Dep. Elec. Eng., Stan-
ford Univ., Sept. 1987.
J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial pro-
gramming approach to transistor sizing,” in Proc. IEEE In t . Conf.
Comput.-Aided Design (ICCAD-85), Santa Clara, CA, Nov. 1985,
pp. 326-328.
J . G. Ecker, “Geometric programming: Methods, computations and
applications,” SIAM Rev.. vol. 22, no. 3, pp. 338-362, July 1980.
J. Rubinstein, P. Penfield, and M. Horowitz, “Signal delay in RC tree
networks,” IEEE Trans. Comput.-Aided Design, vol. CAD-2, no.
3, pp. 202-211, July 1983.

pp. 489-504.

CBS College Publishing, 1982, pp. 215-222.

Performance Analysis of a Message-Oriented Knowledge-Base

WANG-CHAN WONG, TATSUYA SUDA, AND

LUBOMIR BIC

Abstruct- We present a message-driven model for function-free Horn
logic, where the knowledge base is represented as a network of logical
processing elements communicating with one another exclusively through
messages. The lack of centralized control and centralized memory makes
this model suitable for implementation on a highly-parallel asynchronous
computer architecture.

Manuscript received August 15, 1987; revised March 12, 1988 and October
5, 1989. W.-C. Wong and L. Bic were supported in part by the National
Science Foundation under Grants DCR-8503589 and CCR-8709817. T. Suda
was supported in part by the National Science Foundation under Grants DCI-
8602052 and NCR 8907909, and is also supported by the University of Cal-
ifornia MICRO program.

The authors are with the Department of Information and Computer Science,
University of California, Irvine, CA 92717.

IEEE Log Number 9034552.

00 18-9340/90/07oO-095 1 $01 .OO O 1990 IEEE

