Timing Analysis of Combinational Circuits using ADD’s

R. Iris Bahar Hyunwoo Cho |

Gary D. Hachtel

*

- -t - -
Enrico Macii * Fabio Somenzi

University of Colorado
Dept. of Electrical and Computer Engineering
Boulder, CO 80309

Abstract

This paper presents a symbolic algorithm to perform timing
analysis of combinational circuits which takes advantage of the
high compactness of representation of the Algebraic Decision
Diagrams (ADD’s). The procedure we propose, implemented
as an extension of the SIS synthesis sysiem, is able to pro-
vide more accurate timing information than any other method
presented so far; in particular, it 1s able to compute and store
the true delay of the gate-level representation of the circuit for
all possible input vectors, as opposed to the traditional methods
which consider only the worst-case primary inputs combination.
Furthermore, the approach does not require any explicit false
path elimination. The information calculated by the ttming an-
alyzer has several practical applications such as determining the
sets of critical tnput vectors, critical gates, and critical paths of
the circuit, which may be efficiently used in the process of re-
synthesizing the network for low-power consumption.

1 Introduction

In the design of modern IC’s, ensuring that timing constraints
are met is a fundamental issue. Circuit simulators such as
SPICE are occasionally used for this purpose, but simulation
is typically too time consuming to be applied to an entire VLSI
circuit. An alternative way to estimate the delay of a digi-
tal network applies timing analysis methods; the advantage of
these methods over the traditional simulation-based approaches
is that they do not need test vectors to be supplied by the user;
the timing behavior of the circuit is determined either by im-
plicit input vector enumeration, or by implicit exploration of
the paths of the network. Even if symbolic techniques are now
available, input enumeration-based techniques may still be too
expensive to be successfully used; therefore, in the last few years,
researchers have spent considerable efforts in the development of
path-oriented timing analysis techniques. These methods may
provide only a rough estimate of the delay of the circuit, due
to the possible presence in the network of false paths, that is,
of paths that can not be sensitized by any input vector. The
problem to be solved is then the calculation of the true delay
of the circuit, that is, the delay of the circuit calculated along
the longest sensitizable path, also called the critical path of the
circuit. Since the delay of a circuit influences the choice of the
clock cycle, a large difference between the longest false path and
the critical path will result in posing unnecessarily conservative
timing constraints on the design.

Traditional path-oriented techniques for timing analysis and ver-
ification consist of two processes: Path generation and path
sensitization. In path generation, a list of topologically longest

*This work was supported in part by NSF/DARPA grant MIP-
9115432 and SRC contract 92-DJ-206.

THyunwoo Cho is with Motorola Inc., Austin, TX 78735.

*Enrico Macii is also with Politecnico di Torino, Dipartimento di
Automatica e Informatica, Torino, ITALY 10129.

paths is generated and sorted in non-increasing order. In path
sensitization, paths in the list are checked for being sensitizable,
and false paths are eliminated from the list until the critical path
is found. The choice of the sensitization conditions to be used to
identify the critical path influences the correctness of the anal-
ysis [1]. If static sensitization conditions are used [2], the delay
estimation is optimistic; the logical state of the gates along the
path is not always properly taken into account, and this may
lead to an underestimation of the critical path. In the case of
dynamic sensitization [3], the problem which arises is not re-
lated to the correctness of the delay computation, but rather
to its robustness. The circuit that the timing verifier manipu-
lates is an idealized circuit, and the delays are given as a range
of values from which the timing analyzer chooses the maximum
value. The exact time at which a node settles to its final value is
unknown, implying problems with maintaining monotone speed-
up [1]. Identifying the critical path by means of the viability [4]
criterion, on the other hand, results in a pessimistic timing anal-
ysis; the selected critical path might actually be a false path.
The same thing can happen if the true path of the network is
detected using the conditions proposed in [5], or the equivalent
and independently derived co-sensitization conditions published
in [6]. Beside sensitization-based methods, other timing analy-
sis strategies have been proposed in the last few years; some of
them are based on explicit critical path extraction [7], others on
the computation of the true delay using timed test generation-
like [8] or probabilistic [9] techniques.

In this paper we present a symbolic algorithm to perform tim-
ing analysis of combinational circuits which takes advantage of
the high compactness and ease of manipulation of the ADD
data structure [10]. The analysis procedure we propose, imple-
mented as an extension of the SIS synthesis system [11], is able
to provide more accurate timing information than any other
method presented so far. In particular, it is able to compute
and store the true delay (i.e., the length of the critical path) of
the gate-level representation of the network for all possible com-
binations of the primary inputs, as opposed to the traditional
methods which consider only a single worst-case input vector.
Furthermore, the approach does not require any explicit false
path elimination. The information calculated by the timing an-
alyzer has several practical applications such as determining the
set of critical input vectors (i.e., input vectors which sensitize
a critical path), the set of critical gates (i.e., the set of gates
which belong to a critical path), and the set of critical paths
of the circuit, which may be efficiently used in the process of
re-synthesizing the network for low-power consumption.

The rest of this paper is organized as follows. Section 2 gives def-
initions and notation for subsequent usage. Section 3 describes
our ADD-based algorithm for true delay calculation. Section 4
shows preliminary timing analysis results obtained on selected
benchmark circuits, some of which are from [12]. Finally, Sec-
tion 5 is devoted to conclusions and future work.

2 Background
2.1 Definitions and Notation

In the following section we give the most fundamental definitions
concerning combinational circuits, and paths in combinational
circuits. The notation we use throughout this paper is partially
taken from [13].
A combinational circuit (or network) is a directed acyclic graph
composed of gates (or nodes) and connections (or edges) be-
tween gates. Given some input vector z, a k-input gate g; has k
delays, d(gi;,z), one for each input. A path in a combinational
circuit is a sequence of gates, (go,...,gn), where the output of
gate g;, 0 < 2 < n, connects to an input pin of gate g;1.
If the output of a gate, g;, is connected to an input of a gate,
gj, then g; is a fanin of g;. Gate g; is a fanout of gate g;.
The length of a path, P = (go,...,9n) is defined as d(P,z) =
?:—01 d(gij;, =), where j; is the pin connected to the previous
gate g; in the path. If no delay model is specified, the delay
(or topological delay) of a combinational circuit is the maximum
over all z of the length of its longest path. An event is a tran-
sition 0 — 1 or 1 — 0 at a gate. Given a sequence of events,
{eo,€1,...,en}, occurring at gates {go, 91, - -
such that e; occurs as a result of event e;_1, the event eg is said

.,gn} along a path,

to propagate along the path. A controlling value at a gate input
is the value that determines the value at the output of the gate
independent of the other inputs. For example, 0 is a controlling
value for AND/NAND gates, while 1 is a controlling value for
OR/NOR gates. A non-controlling value at a gate input is the
value which is not a controlling value for the gate. For example,
1 is a non-controlling value for AND/NAND gates, while O is a
non-controlling value for OR/NOR gates.

The arrival time, AT(g;, =), is the time at which the output of
gate g; settles to its final value if input vector z is applied at
time 0. Under a specified delay model, a path P = (go,...,gn)
is said to be sensitizable if an event ey occurring at gate go can
propagate along P. The critical path of a circuit is the longest
sensitizable path under a specified delay model; if a path is not
sensitizable, then it is a false path.

2.2 Operating Modes and Delay Models

Let us consider the operation of a circuit over the period of ap-
plication of a sequence of input vectors. Let v; be the vector
applied at time ¢;. In the floating mode of operation, the nodes
of the circuit are not assumed to be ideal capacitors, and there-
fore their state is unknown until it is set by the current input
vector. In the transition mode of operation, on the other hand,
the nodes of the circuit are assumed to be ideal capacitors, and
hence they retain their value set by the previous input vectors
until the current vector forces the voltage to change. Thus, in
the transition mode of operation, the timing response of each
gate of the circuit to v; is also a function of v;_1, while in the
floating mode of operation the response to v; depends only on
v; itself.

The overall timing response of a circuit is computed by first
estimating the delay of each gate in the circuit. The simplest
way to model the delay of a gate is to assign to each pin j of gate
g a fixed number, d(g;,), which represents the time required by
the output to assume the correct value in response to a voltage
change on input 7 under the input vector z. This model, called
the fized gate delay model, indicates that if an event occurs at
pin 7 of gate g at time £y, the output of gate g will settle to its
final value at time ¢o +d(g;, z). Inreality, d(g;,z) is typically an
upper bound on the expected delay, so in fact the actual delay
may be some value in the range [to, to +d(gj, z)]. This is called
the upper-bounded gate delay model. The upper-bounded model

Gl
a dQ: 1
b A=z G2
¢ &T=0)
(@
abc |AT(G2)
000 1
001 3
010 1
011 3
100 1
101 4
110 1
111 4

(b)

Figure 1: (a) A Combinational Circuit. (b) Its Output
Arrival Times. (c) The Corresponding ADD.

in floating mode guarantees the monotone speed-up property: If
any gate along the path to some gate g is made faster, then the
arrival time at the output of g will not increase. Another model,
the bounded gate delay model, assumes that the delay for pin 7 of
gate g is specified as a range, [dl(gj,z), d“(g;,z)], given by the
lower and upper bounds on the actual delays. However, when
the objective is true delay calculation, such a model does not
give any advantage over the upper-bounded gate delay model.

2.3 Algebraic Decision Diagrams

In this section we briefly summarize the main characteristics of
Algebraic Decision Diagrams (ADD’s) [10]. For a more extensive
treatment of this subject the reader can refer to [14].

An ADD is a directed acyclic graph (VU@ UT, E), representing
a set of functions f; : {0,1}™ — S, where S is the finite carrier
of the algebraic structure over which the ADD is defined. V is
the set of the internal nodes. The out-degree of v € V is 2. The
two outgoing arcs for a node v € V are labeled then and else,
respectively. Every node v € V has alabel I(v) € {0,...,n—1}.
The label identifies a variable on which the f;’s depend. & is
the set of the function nodes: The out-degree of ¢ € & is 1
and its in-degree is 0. The function nodes are in one-to-one
correspondence with the f;’s. T is the set of terminal nodes.
The value at the terminal node is stored as a floating point
number rather than encoding time as a binary representation
for efficiency of manipulation. Each terminal node ¢ is labeled
with an element of S, s(t). The out-degree of a terminal node
is 0. E is the set of edges connecting the nodes of the graph;
(vi,v;) is the edge connecting node v; to v;. The variables of the
ADD are ordered; if v; is a descendant of v; (i.e., (vi,v;) € E),
then I(v;) < I(v;).

An ADD represents a set of boolean functions, one for each
function node, defined as follows:

1. The function of a terminal node, ¢, is the constant function
s(t). The constant s(t) is interpreted as an element of a
boolean algebra larger than or equal in size to S.

2. The function of a node v € V is given by I(v) - finen + I(v)’ -
felse, where ‘-’ and ‘+’ denote boolean conjunction and dis-
junction, and finen and feise are the functions of the then
and else children.

3. The function of ¢ € ® is the function of its only child.

For example, given the circuit of Figure 1(a), the table of Fig-
ure 1(b), which provides the arrival time of the output node of
gate G2 for each input vector, can be represented with the ADD
of Figure 1(c).

a
b —— G2
@)C
‘7o

Functional BDD's

Arrival Time ADD’s

2]
-]

I\
R

Figure 2: A Combinational Circuit, and its Associated

Functional BDD’s and Arrival Time ADD’s.

3 ADD-Based Timing Analysis

The problem of calculating the timing response of a combina-
tional circuit can be formulated as follows: Given a combina-
tional circuit, find the set of input vectors for which the length
of the critical path, under a specified mode of operation and a
gate delay model, is maximum; the length of the critical path
gives the overall circuit delay.

Using the ADD data structure, we are able to find more than
just the overall circuit delay. In fact, the algorithm described
in the next section allows us to compute and store the length of
the critical path for each input vector. The amount of timing
information we are able to compute is then much greater than
what is usually computed by traditional delay analyzers. This
additional information is useful in applications like re-synthesis
for low-power.

In the realization of our ADD-based timing analysis tool, we
have made the following assumptions:

1. The circuit is assumed to operate in floating mode.
2. The monotone speed-up gate delay model is used.

3. Gate delays are modeled as pin-to-pin delays
4

. For each input pin j of gate g, d(g;,z) is composed of the
intrinsic delay of the gate plus the delay due to the driving
and load factors of the gate when input vector z is applied
to the gate.

5. Gate delays may be different for rising and falling input tran-
sitions dependingon the library used to map the circuit. Also,
different pins may be responsible for different gate delays.

3.1 The Algorithm

Given a gate g of the network and its input vector z, the arrival
time at its output, AT (g,), is evaluated in terms of its con-
trolling values, and its fanin gate delays, d(g;,z). Let g7 be the
gate connected to g via pin 7.

If at least one fanin g7 of g has a controlling value,

AT(g,z) = nljin{(AT(gj7z) | fg5 = controlling)+d(g;,=)}. (1)
If all fanins of g have non-controlling values,

AT(g,z) = m];_ax{AT(gj, z) + d(gj, z)}- (2)

Using the circuit represented in Figure 2, we can now go through

an example of how the arrival times are calculated. For the sake
of simplicity, assume unit time gate delay for all gates and all

ComputeAT(BG,G,AT,DELAY) {
if (non_contr_value(BG) && all_const(AT)) {
forall (fanin;)
time = Max(AT;, non_contr_delay(DELAY;))
return(time);

if (contr_value(BG) && all_const(AT) && all_const(G)) {
forall (fanin; such that contr_input(G;))
time = Min(AT;,contr_delay(DELAY;))
return(time);

if (table lookup(cache,(BG,G,AT,DELAY),R))
return(R);

v = top_var(BG,G,AT);

R; = ComputeAT(BG,,G,,AT,,DELAY);

R. = ComputeAT(BG,,G,,AT,,DELAY);

R=v-Ry+7v - R

table_insert(cache,(BG,G,AT,DELAY),R);

return(R);

Figure 3: The Arrival Times Computation Algorithm.

its pins, i.e., d(g;,z) = 1. The arrival time for inputs a, b, and
c of the circuit is shown in parenthesis. Assume we want to
calculate AT(G2,011), the arrival time at the output of gate
G2, given the input vector {a,b,c} = (o011). We start with
the evaluation of gate G1. The arrival time at the output of
gate G1 is controlled by the input a. Therefore, the arrival
time at its output is AT(a,011) + d(Glg,011) = 1+ 1 = 2,
and its functional value is set to 1. All fanins to G2 have
non-controlling values, therefore, the arrival time of G2 is de-
termined by the latest arriving input. That is, AT(G2,011) =
max {(AT(G1,011)+d(G2q1,011)),(AT(c, 011)+d(G2¢,011))} =
AT(G1,011) + d(G2g1,011) =2+ 1 = 3.

We are now ready to see how ADD’s are used to compute the
arrival times of a circuit for all combinations of input values.
In Figure 3 we show the pseudo-code of the procedure which
computes the arrival time ADD for a simple gate in a circuit.
The algorithm requires four parameters, the functional BDD of
the gate, BG, and three arrays, G, AT, and DELAY, containing
the functional BDD’s, arrival time ADD’s, and rise and fall gate
delay information respectively, for each fanin to the gate. The
arrival times are computed for all combinations of input values.
This is accomplished by splitting on the top variable among
all the arguments, BG, G, and AT, until a constant value of
1 or O has been reached for BG, the functional BDD of the
gate. This constant, 1 or 0, determines whether the gate has
any controlling values at its fanins. For example, if the gateis a
NAND, then a constant 1 at its output implies at least one fanin
is at a controlling value of 0. Likewise, if the gateis a NOR, then
a constant 1 implies all fanins are non-controlling, or 0. If all
fanins of a gate are non-controlling (i.e., non_controlling(BG) is
true) then we already know that the BDD’s of all the fanins are
also constant, and we only need to check if the arrival times of
these fanins are constant as well. If so, then we have reached
a terminal case, and we can compute the arrival time for the
gate given the input values associated with the splitting order.
This computation is done in line 4 of the pseudo-code using
Equation 2.

If on the other hand, it has been determined that at least one
fanin of a gate is controlling (i.e., controlling{ BG) is true), then
it is not necessarily the case that all fanins are constant; only
one controlling fanin needs to be constant. Since the arrival time
at the output of the gate is determined by the earliest arriving
controlling input, we need to know exactly which inputs are
controlling. Therefore, it may be necessary to further split on
variables until both arrival time ADD’s and functional BDD’s
of all fanins are constant. The arrival time computation is done
in line 9 of the code using Equation 1.

Going back to the example in Figure 2, we can now see how the
arrival time ADD is constructed using again the input vector
{a,b,c} = (011). We first split the BDD of G2, along with the
BDD’s and ADD’s of G1 and ¢ with the variable a = 0, i.e.,
{a,b,c} = (0xx). Although the BDD and ADD of G1 are now
constant (BDD(G1,0xx) = 1, AT(G1,0xx) = 2), the BDD’s
for G2 and c are not constant, so we split again with ¢ = 1.
Notice that although I(b) < I(c), b is no longer contained in the
BDD’s or ADD’s, so we split on c instead. Now, we have reached
constant values for the BDD’s (BDD(G2,0x1) = 0,c = 1), and
the arrival time can be computed as AT(G1,0x1)+d(G2g1,0X1)
=241 = 3. Going now to the arrival time ADD of G2 we see
that the arrival time pointed to by the vector {a,b,c} = (o11)
is 3. Other arrival times are computed in a similar fashion,
by splitting on the top variable v and recursively calling the
procedure on the then and else branches until a terminal con-
dition is reached. The ADD is constructed by combining the
ADD’s of these branches, R; and Re, and forming the result,
R=v-R:+ v -Re. Notice by the example shown in Figure 2,
the arrival time ADD of a gate may contain more or fewer nodes
than its functional BDD. Also, an arrival time ADD of a gate
may not be a function of the same variables as its BDD.

Once the arrival time computation is complete, we have avail-
able not only the critical path delay at the output of the gate,
but also the exact set of input values that produce that delay.
Tracing the arrival time ADD for G2, we see that the critical
path of 4 is produced by the input vectors {a,b, c} = (101),(111).
In fact, we can extract the exact set of input values for any
possible arrival time seen at the output of the gate. The ADD
structure also lends itself well to the handling of don’t care com-
binations at the inputs. For instance, if certain primary input
combinations will never happen in a circuit, then the arrival
times for these input values need not be computed, thereby sim-
plifying the overall timing analysis.

To speed up the computation time, a local hash table is used
for each gate to store intermediate results as its arrival time is
computed. BG, the functional BDD of the gate, is not strictly
required in the recursion or hashing function because it is logi-
cally implied by the BDD'’s for the inputs. However, it is faster
to check for the terminal cases and to detect that two subprob-
lems are not identical if BG is available.

3.2 Input Variable Ordering

Although in some instances the arrival time ADD of a gate may
be smaller in size than its functional BDD, in practice the ADD
usually runs about 5 to 10 times larger than its BDD in terms
of number of nodes. The size of the ADD’s of the gates depends
partially on the structure of the circuit and to a large extent
on the input variable ordering. Finding a good input variable
ordering for the ADD’s is key to calculating the arrival times
with efficient time and memory usage.

Much recent work has been done in the area of reducing the size
of the functional BDD representation of a circuit using smart
variable ordering methods [16, 17, 18, 19, 20]. A good variable
order for the functional BDD’s of a circuit often correlates with
a good variable ordering for the arrival time ADD’s. However,
an ordering that is “good enough” to efficiently store the func-
tional BDD may not be good enough for the arrival time ADD.
Also, as with BDD'’s, a good ordering method for one particu-
lar circuit’s ADD is not necessarily a good ordering method for
a different circuit. Using a simple depth-first search ordering
algorithm may work well for a fanout-free circuit, for example,
but may cause an ADD size explosion for a different circuit.
The dependency of the size of the ADD to the structure of the
circuit suggests using an ordering that is more sensitive to the
fanout of the circuit. A different method may provide a bet-

Circuit PI PO Gates Top. True Time
H ‘ ‘ ‘ Delay | Delay (sec) H
C432 36 7 197 24 23 | 1954.9

C499 41 32 530 24 mem-out

C880 60 26 357 15 15 | 435.0
C2670 233 140 810 26 time-out

C5315 178 123 1710 34 34 11800.3
C7552 207 108 2776 39 38 86.7
CBP16 33 17 278 51 25 4.8
CBP32 65 33 496 99 41 17.6
CBP64 129 65 992 195 73 74.9
CBP128 257 129 1984 387 137 431.9
Ablock 52 16 609 54 30 30.1

Table 1: Results for Arrival Time Calculation.

ter ordering than depth-first search, but this still may not be
good enough given that on average ADD’s grow at a faster rate
than BDD’s. Initial experiments suggest using a dynamic vari-
able ordering, such as those presented in [17, 18, 20]. Since the
time to run a dynamic variable ordering procedure depends on
the initial ordering of the variables, a good approach would be
to start with an ordering sensitive to fanout, and then proceed
to dynamically reorder the variables as the ADD’s grow in size
above a certain threshold.

3.3 Reducing Memory Requirements

Generating the ADD’s for the arrival time of all the gates of a
circuit may require a large amount of memory. If one is inter-
ested only in detailed information on the outputs of a circuit,
two approaches can be used to significantly reduce this memory
requirement: deleting unused ADD’s and BDD'’s, and sorting
the primary outputs. As the arrival time of a circuit is being
calculated, we move from the inputs forward toward the outputs
visiting all the gates in a depth-first search manner. Using this
method, we guarantee that all fanins of a gate have been visited
and their arrival times computed before the gate itself is visited.
Furthermore, once all the fanouts of a gate have been visited,
then the ADD and BDD of that gate will no longer be needed
to compute the arrival time ADD of any other gate. ADD’s and
BDD'’s of these gates may be freed, effectively reducing mem-
ory usage. The other effective approach involves pre-sorting the
primary outputs according to non-increasing static delay. The
output with the longest static delay is processed first. If the
true delay of this output is greater than or equal to the longest
static delay of the next output, then the critical path has been
found, and we do not need to proceed any further.

4 Experimental Results

In Table 1 we report the results for computing the true delay
for some combinational benchmark circuits using ADD’s we ob-
tained on a DEC-Station 5000 with 80 Megabytes of RAM. Most
of the examples are from the IsSCAS’85 set [12]. Also presented
are data for 16, 32, 64, and 128-bit Carry-Bypass Adders, and
for a component module, called Ablock, of a greatest-common-
divisor circuit, which contains two 16-bit Carry-Bypass Adders
and some multiplexing logic. The circuits were mapped onto a
NAND /inverter library using the SIS [11] technology mapper.
This limited library was used only to simplify the initial coding
of the algorithm; the code can easily be expanded to handle
other gates. Arrival times were computed using unit gate de-
lays. In particular, column Circuit indicates the circuit name,
and columns PI, PO, and Gates indicate the number of primary
inputs, primary outputs, and number of gates respectively after
technology mapping of each circuit. Column Top. Delay gives
the static delay computed by SIS, and column True Delay gives

the true delay calculated by our ADD-based timing analyzer.
Finally, column Time reports the CPU time in seconds needed
to calculate the arrival time of the critical path.

Of course, no comparison is possible with results obtained using
existing timing analysis tools because, as mentioned earlier in
the paper, the amount of information calculated by our proce-
dure is much more extensive than the simple worst-case, true
delay of the circuit; this leads, obviously, to run times of the
ADD-based method that are sensibly higher than what has been
published, for example, in [8]. However, there is a class of cir-
cuits, the Carry-Bypass Adders, for which our procedure is very
competitive also in terms of run time. Carry Bypass Adders are
known to be particularly difficult to handle by timing analysis
algorithms based on false paths elimination. Consequently, true
delay results on these circuits are not available in the literature,
but for devices of a limited size, and the CPU time required
to complete the true delay computation is usually much higher
than the time taken by our ADD-based method.

The hash table proved to be quite efficient in our computations;
hit rates averaged about 30%. Although these examples were
run using unit gate delay, the tool supports non-unit delays on
gates, as well as skewed rise/fall delays for each fanin pin and
delays due to fanout load. In general it takes longer to compute
arrival times when the circuit does not have unit gate delay.
In the case of the Carry-Bypass Adders and the Ablock, this
extra time is nominal (about 10% longer). For other circuits,
computation times may be several times longer. These time
should go down as improvements to the algorithm are made,
since the size of arrival time ADD’s (25-50% larger) does not
indicate major problems in terms of memory requirements.

5 Conclusions and Future Work

Designing digital circuits that satisfy given timing constraints is
one of the main requirements in the process of fabricating mod-
ern VLSI devices. Various timing analysis techniques have been
presented over the years; most of them were based on explicit
false paths detection and elimination, others used probabilistic
or test generation-like approaches.

In this paper we have presented an ADD-based method to per-
form true delay computation in combinational circuits. The
algorithm is able to efficiently compute and store the length of
the critical path for all possible input vectors. Experimental
results, though preliminary, are very encouraging, especially on
some circuits, like the Carry-Bypass Adders.

The amount of timing information provided by our tool allows
us to approach the problem of re-synthesizing combinational cir-
cuits for low power; this is the direction we are currently moving
towards. The exact knowledge of the arrival times at each gate
of the network can be used to identify critical input vectors,
critical gates, and critical paths. Combinational circuits can
be re-synthesized for low-power using two approaches: First, re-
ducing glitches caused by transition delays when primary inputs
switches values, and second by relaxing arrival times on gates
that are not on the critical path. We want to choose a delay that
has the effect of both reducing glitches due to input transitions,
and reducing capacitive load at the output of the gate.
Variable ordering plays a fundamental role in all the BDD/ADD
based symbolic algorithms. We are currently investigating the
relationship between functional BDD’s and arrival time ADD’s
with respect to their variable orderings. Many algorithms and
heuristics are available to find good orderings for the functional
BDD'’s of a circuit, but there is no guarantee that the same or-
dering criteria work when applied to arrival time ADD’s. Fur-
thermore, we are trying to apply to ADD’s dynamic reordering
techniques, as the ones suggested by Bernard Plessier [17], Eric
Felt and co-workers [18], and Rick Rudell [20].

Acknowledgments

We wish to thank Seh-Woong Jeong, Rick Rudell, and Jerry
Yang for providing us with good BDD input variable orderings
for the Iscas’85 benchmark circuits.

References

[1] P. C. McGeer, R. K. Brayton, Integrating Functional and Temporal
Domains in Logic Design, Kluwer Academic Publishers, 1991.

[2] J. Benkoski, E. V. Meersch, L. Claesen, H. De Man, “Efficient Algo-
rithms for Solving the False Path Problem in Timing Verification”,
ICCAD-87: IEEE International Conference on Computer Aided De-
sign, pp. 44-47, Santa Clara, CA, November 1987.

[3] D. H. C. Du, S. H. C. Yen, S. Ghanta, “On the General False
Path Problem in Timing Analysis”, DAC-26: ACM/IEEE Design
Automation Conference, pp. 56565-560, Las Vegas, NV, June 1989.

[4] P. C. McGeer, R. K. Brayton, “Efficient Algorithms for Computing
the Longest Viable Path in a Combinational Network”, DAC-26:
ACM/IEEE Design Automation Conference, pp. 561-567, Las Vegas,
NV, June 1989.

[6] H. C. Chen, D. H. C. Du, “Path Sensitization in Critical Paths”,
IEEE Transactions on Computer Aided Design, Vol. CAD-12, No. 2,
pp. 196-207, February 1993.

[6] S.Devadas, K. Keutzer, S. Malik, “Delay Computation in Combina-
tional Logic Circuits: Theory and Algorithms”, ICCAD-91: IEEE
International Conference on Computer Aided Design, pp. 176-179,
Santa Clara, CA, November 1991.

[7] H. Chang, J. A. Abraham, “VIPER: An Efficient Vigorously Sensi-
tizable Path Extractor”, DAC-30: ACM/IEEE Design Automation
Conference, pp. 112-117, Dallas, TX, June 1993.

[8] S.Devadas, K. Keutzer, S. Malik, A. Wang, “Computation of Float-
ing Mode Delay in Combinational Circuits: Practice and Implemen-
tation”, International Symposia on Information Sciences, pp. 88-75,
Fukuoka, Japan, July 1992.

[9] S. Devadas, H. F. Jyu, K. Keutzer, S. Malik, “Statistical Timing
Analysis of Combinational Circuits”, ICCD-92: IEEE International
Conference on Computer Design, pp. 38-43, Cambridge, MA, Octo-
ber 1992.

[10] R.I.Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.
Pardo, F. Somenszi, “Algebraic Decision Diagrams and their Appli-
cations”, ICCAD-93: ACM/IEEE International Conference on Com-
puter Aided Design, pp. 188-191, Santa Clara, California, November
1993.

[11] E. M. Sentovich, et al., SIS: A System for Sequential Circuits Syn-
thesis, Technical Report Memorandum No. UCB/ERL M92/41, Uni-
versity of California at Berkeley, May 1992.

[12] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran”, ISCAS-
85: IEEE International Symposium on Circuits and Systems, Kyoto,
Japan, June 1985.

[13] K. Keutzer, S. Malik, A. Saldanha, “Is Redundancy Necessary to
Reduce Delay?”, IEEE Transactions on Computer Aided Design,
Vol. CAD-10, No. 4, pp- 427-435, April 1991.

[14] R.I.Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.
Pardo, F. Somenszi, Algebraic Decision Diagrams and their Applica-
tions, Internal Report, VLSI/CAD Research Group, Dept. of Elec-
trical and Computer Engineering, University of Colorado at Boul-
der, April 1993.

[16] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation”, IEEE Transactions on Computers, Vol. C-35, No. 8, pp. 79-
85, August 1986.

[16] S.W. Jeong, B. Plessier, G. D. Hachtel, F. Somenzi, “Variable Or-
dering for Binary Decision Diagrams”, EDAC-92: IEEE European
Conference on Design Automation, pp. 447-451, Brussels, Belgium,
March 1992.

[17] B. Plessier, A General Framework for Verification of Sequential Cir-
cuits, Ph. D. Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado at Boulder, May 1993.

[18] E. Felt, G. York, R. K. Brayton, A. Sangiovanni-Vincentelli, “Dy-
namic Variable Reordering for BDD Minimization”, EuroDAC-93:
IEEE European Design Automation Conference, pp. 130-135, Ham-
burg, Germany, September 1993.

[19] H. Fujii, G. Ootomo, C. Hori, “Interleaving Based Variable Order-
ing Methods for Ordered Binary Decision Diagrams”, ICCAD-93:
ACM/IEEE International Conference on Computer Aided Design,
pp. 38-41, Santa Clara, CA, November 1993.

[20] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision
Diagrams”, ICCAD-93: ACM/IEEE International Conference on
Computer Aided Design, pp. 42-47, Santa Clara, California, Novem-
ber 1993.

