
Problem 5: Latch Correspondence

2005 ICCAD/SIGDA CADathlon

1. Introduction

Formal verification tools have evolved from academic toy applications to full−fledged industrial deployment over
the course of a decade. The invention of many clever algorithms and data structures have led to this success. One
of them is van Eijk's algorithm that determines the maximal correspondence relation over signals in a sequential
logic circuit. Once this relation is known it often precludes an expensive reachable state computation to prove
equivalence of two designs or to prove a safety property.

2. Problem statement

2.1. Brief description

Your task is to determine the number of equivalence classes among the memory elements (latches or flip−flops)
of a sequential circuit using the method as outlined in the paper. Note that this method is not complete: there
might be equivalences that go by undiscovered!

2.2. Input/output specification

The circuit is represented as a number of next−state equations, one for each memory element. You may assume
that the initial state (or reset value) of all memory elements is the logic value 0 (Boolean false). We do not
consider the extended equivalence−module−inversion here! You may assume that the actually supplied input
conforms to the format as specified below. A parser/reader for the input format will be provided. Also, the parse
tree data structure and a simple relation data structure are provided. The output of your solution program merely
consist of the number of equivalence classes.

2.2.1. Input

The next−state function (NSFunction in the syntax specification below) is a Boolean function that defines the
data input of a memory element. A next−state function is expressed in terms of the current−state variables and the
primary input variables. For simplicity, state variables will be denoted by upper−case letters; input variables are
denoted by lower−case letters. The input file consists of 1 or more next−state equations each one terminated by a
semicolon. For more details, consult the parser.h file.

Note that in a logic expression, the (optional) AND−operator '&' binds stronger than the OR−operator '+'. Both
are commutative and associative. Note that the AND−operator is optional and may thus also be denoted by
juxtaposition of Factors. The NOT−operator '!' has the highest precedence. The constants 0 and 1 denote the truth
values false respectively true.

The input format is defined by the following Backus Naur Form syntax:

 Input : NSFunctions .
 NSFunctions : NSFunction [NSFunctions] .
 NSFunction : "@" S_Variable "=" Expression ";" .

Problem 5: Latch Correspondence

Problem 5: Latch Correspondence 1

 Expression : Term ["+" Expression] .
 Term : Factor [["&"] Term] .
 Factor : Primary | "!" Factor .
 Primary : Constant | Variable | "(" Expression ")" .
 Constant : "0" | "1" .
 Literal : S_Variable | I_Variable .
 S_Variable : "A" | "B" | "C" | ... | 'Z' .
 I_Variable : "a" | "b" | "c" | ... | 'z' .

2.2.1.1. Example input

Here is a typical input file for your program.

 # Example input
 @ A = !C;
 @ B = !x;
 @ C = A & B;
 @ D = C & x;

 @ E = F;
 @ F = !(x + F);
 @ G = E & x;

2.2.2. Output

You are required to compute the number of equivalence classes of corresponding latches as determined by the
method presented in the paper. The output therefore is a single non−negative integer number. Print this for
instance using the format descriptor "%d\n".
Note: output should be to standard output (stdout in C, or use cout in C++).

2.2.2.1. Example output

This is the output for the input example given earlier.

 7

3. Additional information

Work diligently and shoot for obvious and easy solutions. Use simple data structures; for instance for storing the
equivalence relation you could opt for a square bit matrix (as already is provided). Efficiency of your program is
in this case of lesser importance; make sure it works first. Look at the supplied source files; they include useful
material. Look at and run the tests and check their output.

A recommended approach is to start by understanding the available parser, the expression tree data structure and
the BDD package interface.

4. References

Detection of Equivalent State Variables in Finite State Machine Verification, C.A.J. van Eijk, and J.A.G.
Jess, Workshop notes of the 1995 IWLS, 1995, pp. 3.35-3.44

•

Problem 5: Latch Correspondence

2 2.2. Input/output specification

	Problem 5: Latch Correspondence

