CADathlon at ICCAD Problem 5: Latch Correspondence

Problem 5: Latch Correspondence

2005 ICCAD/SIGDA CADathlon

1. Introduction

Formal verification tools have evolved from academic toy applications to full-fledged industrial deployment over
the course of a decade. The invention of many clever algorithms and data structures have led to this success. One
of them is van Eijk's algorithm that determines the maximal correspondence relation over signals in a sequential
logic circuit. Once this relation is known it often precludes an expensive reachable state computation to prove
equivalence of two designs or to prove a safety property.

2. Problem statement

2.1. Brief description

Your task is to determine the number of equivalence classes among the memory elements (latches or flip—flops)
of a sequential circuit using the method as outlined in the paper. Note that this method is not complete: there
might be equivalences that go by undiscovered!

2.2. Input/output specification

The circuit is represented as a number of next—state equations, one for each memory element. You may assume
that the initial state (or reset value) of all memory elements is the logic value 0 (Boolean false). We do not
consider the extended equivalence—-module-inversion here! You may assume that the actually supplied input
conforms to the format as specified below. A parser/reader for the input format will be provided. Also, the parse
tree data structure and a simple relation data structure are provided. The output of your solution program merely
consist of the number of equivalence classes.

2.2.1. Input

The next-state function (NSFunction in the syntax specification below) is a Boolean function that defines the

data input of a memory element. A next—state function is expressed in terms of the current-state variables and the
primary input variables. For simplicity, state variables will be denoted by upper—case letters; input variables are
denoted by lower—case letters. The input file consists of 1 or more next-state equations each one terminated by a
semicolon. For more details, consult the parser.h file.

Note that in a logic expression, the (optional) AND—operator '&' binds stronger than the OR-operator '+'. Both

are commutative and associative. Note that the AND-operator is optional and may thus also be denoted by
juxtaposition of Factors. The NOT—-operator 'I' has the highest precedence. The constants 0 and 1 denote the truth
values false respectively true.

The input format is defined by the following Backus Naur Form syntax:

Input : NSFunctions .
NSFunctions : NSFunction [NSFunctions] .
NSFunction : "@" S_Variable "=" Expression ";" .

Problem 5: Latch Correspondence 1

Problem 5: Latch Correspondence CADathlon at ICCAD

Expression : Term ["+" Expression] .

Term :Factor [["&"] Term] .

Factor : Primary | "I" Factor .

Primary : Constant | Variable | "(" Expression ")" .
Constant :"0"|"1".

Literal :S_Variable | |_Variable .

S_Variable : "A"|"B"|"C"|...|'Z".

|_Variable : "a"|"b"|"c"|...|'Z".

2.2.1.1. Example input
Here is a typical input file for your program.

Example input
@A=1C;

@ B =Ix;
@C=A&B;
@D=C&x;

@E-=F,
@F=!(x+F);
@G=E&x;

2.2.2. Output

You are required to compute the number of equivalence classes of corresponding latches as determined by the
method presented in the paper. The output therefore is a single non—negative integer number. Print this for
instance using the format descriptor "%d\n".

Note: output should be to standard output (stdout in C, or use cout in C++).

2.2.2.1. Example output
This is the output for the input example given earlier.

7

3. Additional information

Work diligently and shoot for obvious and easy solutions. Use simple data structures; for instance for storing the
equivalence relation you could opt for a square bit matrix (as already is provided). Efficiency of your program is
in this case of lesser importance; make sure it works first. Look at the supplied source files; they include useful
material. Look at and run the tests and check their output.

A recommended approach is to start by understanding the available parser, the expression tree data structure and
the BDD package interface.

4. References

« Detection of Equivalent State Variables in Finite State Machine Verification, C.A.J. van Eijk, and J.A.G.
Jess, Workshop notes of the 1995 IWLS, 1995, pp. 3.35-3.44

2 2.2. Input/output specification

	Problem 5: Latch Correspondence

