
Problem 4: Design of linear-phase FIR filters via linear programming

2005 ICCAD/SIGDA CADathlon

November 2, 2005

1 Introduction

This problem asks you to implement a program that designs linear-phase finite impulse response (FIR) filters.
A FIR filter is an array of L real numbers

a0, a1, . . . , aL−1 ,

where L is the filter length .
A filter is usually applied to a (discrete-time) input signal xt, where t is an integer, to produce an output

signal yt as follows:

yt =
∑

0≤k<L

akxt−k .

If the input signal is the sine wave xt = ejωt, where j =
√
−1, then the output signal is

yt =
∑

0≤k<L

akejω(t−k) = xt

∑

0≤k<L

ake−jωk = xtH(ω) .

Thus, the filter outputs a sine wave of the same frequency as the input, while multiplying the wave amplitude
by H(ω). The function H(ω) is therefore called the frequency response of the filter.

The filter design problem is the problem of finding the coefficients ak such that |H(ω)| has a desired
shape. In general, for finite filter length L, we cannot obtain a desired H(ω) exactly, and we must resort to a
suitable approximation.

In this problem, we focus on linear phase FIR filters, in which the coefficient ak enjoy one of the following
two symmetries:

Even symmetry: ak = aL−1−k. In this case, we have

H(ω) = e−j(L−1)/2A(ω) ,

where A(ω) is a weighted sum of cosine functions.

Odd symmetry: ak = −aL−1−k. In this case, we have

H(ω) = j e−j(L−1)/2A(ω) ,

where A(ω) is a weighted sum of sine functions.

In either case, we have |H | = |A|, which makes the filter design problem easier because approximating the real
function A easier than approximating an arbitrary complex function H . With a slight abuse of language, we
call A(ω) the frequency response as well, since the relation between A and H is fixed by the filter symmetry.

1

Steiglitz et al. [1] propose a filter design methodology where A(ω) is constrained to be in the range
[L(ω), U(ω)], for given upper and lower bounds L and U . Specifically, their method finds a filter whose frequency
response A(ω) satisfies the constraints

L(ω) + y ≤ A(ω) ≤ U(ω) − y

and y ≥ 0 is as large as possible. A filter that maximizes y is said to be optimal (in the L∞ norm sense).
In this CADathlon, we ask you to use Steiglitz’s approach to solve a slightly modified problem. Instead of

using upper and lower bounds, we aim at approximating a desired frequency response F (ω). Our goal is to find
the optimal linear-phase filter whose frequency response A(ω) satisfies the constraints

|A(ω) − F (ω)| ≤ w(ω) · (−y) , (1)

where (−y) is as small as possible, and w ≥ 0 is a given real function (the weight). We use −y instead of y
for consistency with the use of y in the paper, and our weight function avoids the funny notion of “hugged”
constraints employed in the paper. Observe that if w(ω0) = 0, then A(ω0) = F (ω0): the filter’s response must
exactly match the desired response at ω0. Conversely, if we specify that w(ω0) = ∞, then A(ω0) can assume
an arbitrary value.

The constraints from Eq. 1 are equivalent to the contraints

F (ω) + w(ω)y ≤ A(ω) ≤ F (ω) − w(ω)y ,

which can be solved by means of linear programming as in the paper.
In order to keep the input format simple, we restrict F (ω) to be piecewise linear, and w(ω) to be piecewise

constant.

2 Problem statement

2.1 Brief description

Write a program that designs optimal linear-phase FIR filters given a filter length L, a filter symmetry, a desired
frequency response F , and a desired weight function w.

2.2 Input specification

The first line of the input has the form

<SYMMETRY> <FILTER-LENGTH> <SAMPLING-FREQUENCY>

The <SYMMETRY> is one character, either ‘E’ (for even symmetry) or ‘O’ (for odd symmetry). The <FILTER-LENGTH>
is an integer. The <SAMPLING-FREQUENCY> is in Hz and a real number.

Each subsequent line of the input is called a specification , and it has the form

<LEFT-FREQ> <RIGHT-FREQ> <LEFT-VAL> <RIGHT-VAL> <WEIGHT>

Such a line specifies that F (<LEFT-FREQ>) = <LEFT-VAL>, F (<RIGHT-FREQ>) = <RIGHT-VAL>, and that
values of F in the range [<LEFT-FREQ>, <RIGHT-FREQ>], are obtained by linear interpolation. In the same range,
the weight function w has the constant value <WEIGHT>.

All frequencies are relative to the sampling frequency. To convert a frequency f into an angular frequency
ω, use the formula

ω = 2πf/f0 ,

where f0 is the sampling frequency.

2

2.2.1 Example input

The following input specifies a filter of even symmetry, length 10, running at 60Hz. Its frequency response is 1
in the range 0–10Hz and 0 in the range 20–30Hz. It is therefore a low-pass filter.

E 10 60

0 10 1 1 1

20 30 0 0 1

2.3 Output specification

The program must print the L filter coefficients a0, a1, . . ., aL−1 in this order, one per line. Use the printf

format %g followed by a newline character.

2.3.1 Example output

In response to the example input in Section 2.2.1, your program should produce something like the following
output:

0.019804

-0.040647

-0.0739521

0.134029

0.447932

0.447932

0.134029

-0.0739521

-0.040647

0.019804

3 Additional information

3.1 Programming infrastructure

We do provide a parser for the input format, and a linear programming solver. Your task is to write the function
solve in src/solution.c that creates a linear program, invokes the linear programming solver, and prints the
result.

3.1.1 Parser

The parser is in src/main.c:parse(). It reads the input format and sets the four variables symmetry,
sampling_frequency, filter_length, and specifications that are declared at the top of the file. The
variable specifications is a linked list of specifications, each corresponding to an input line. The next field
points to the next element in the linked list, and a null pointer denotes the end of the list.

3.1.2 Linear programming solver

We provide the LPPRIM linear programming solver. The following example shows how to use it.
Assume that you want to solve the linear program:

min cT x subject to Ax = b and x ≥ 0,

where A is an nrow× ncol matrix, and the sizes of x, c, and b are implied.
You first create a “simplex object”

3

SIMPLEX *S = simplex_make(nrow, ncol);

Then you set the “objective function” cT x as follows:

simplex_set_objective(S, c);

where c is an array of ncol doubles.
Then, for j = 0, 1, 2, . . . , nrow− 1, you add equation Ajx = bj , where Aj is the j-th row of A, as follows:

simplex_add_equation(S, row, rhs);

where row is an array of ncol doubles containing the j-th row of A, and rhs is the double value of bj (the
right-hand side of the equation).

Finally, you call

simplex_solve(S);

If the return value of simplex_solve(S) is not S_OPTIMAL, then you have a bug. (A general linear program
might return S_INFEASIBLE or S_UNBOUNDED, but all our test cases have a unique optimal solution.)

You can read the solution x of the problem in S->primals, an array of ncol doubles. More importantly,
S->duals (an array of nrow doubles) contains the solution y of the dual problem

max bT y subject to AT y ≤ c.

3.2 Hints

• The four cases even/odd symmetry and even/odd filter length are all slightly different. You may want to
focus on even symmetry and odd length first, as in [1], and then solve the other cases.

Your program should work in all four cases, but partial credit will be given if you don’t get all cases right.

• Make sure that your program works when <LEFT-FREQ> = <RIGHT-FREQ>.

• We provide sample inputs in the tests/ directory, together with the expected output.

Numerical differences between your output and the output that we provide are normal. Two filters with
moderately different coefficients can still have a very similar frequency response. Your output will be
judged in the frequency domain, not in the time domain.

• As a debugging aid, it may be helpful to plot the frequency response of your filter to see whether it makes
sense. For your convenience, program src/plot_response.c reads the filter coefficients and produces a
file of pairs ω, |A(ω)|, which you can plot using, e.g., gnuplot, or

fir <../tests/01.in | plot_response | graph -TX

References

[1] K. Steiglitz, T. W. Parks, and J. F. Kaiser. METEOR: a constraint-based FIR filter design program. IEEE

Transactions on Signal Processing, 40(8):1901–1909, August 1992.

4

