
Detection of Equivalent State Variables
in Finite State Machine Verification

C.A.J. van Eijk and J.A.G. Jess
Eindhoven University of Technology, Department of Electrical Engineering

Design Automation Section, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: C.A.J.v.Eijk@ele.tue.nl and J.A.G.Jess@ele.tue.nl

Abstract

This paper proposes a new technique to detect equivalent state variables for finite state machine
verification. The technique can easily be integrated with existing verification methods and
significantly extends the ability of these methods to handle finite state machines (FSMs) with
similar state encodings. This is of practical importance as it enlarges the class of FSMs for
which verification is feasible. The proposed technique can also be used to verify combinational
equivalence of FSMs with unknown correspondence between the state variables. The
effectiveness of the technique is shown by experimental results on well-known benchmarks
with up to 1426 state variables.

1 Introduction

This paper addresses the problem of verifying the equivalence of finite state machines. Impressive progress
has been made in this area by the introduction of so-called symbolic techniques, which are based on the
application of binary decision diagrams (BDDs) to traverse the state space (see e.g. [2][3][5][14]). Although
these methods can conceivably handle large FSMs with current BDD-based implementation techniques, the
biggest problem faced is still that of scale. The symbolic methods that have been proposed are based on an
implicit traversal of the state space. A major drawback is their inability to exploit any similarities of the FSMs
under comparison. These similarities can for example consist of functionally equivalent state variables in the
two FSMs. Because many design steps do not completely change the state encoding of a design, such
similarities are likely to occur in practice.

This paper proposes a fully automatic technique to detect equivalent state variables before the reachable state
space of the product machine is calculated, and discusses how it can be integrated with existing verification
methods. The proposed technique does not require extra information from the designer and forms a robust
extension of existing verification methods. As will be shown in section 2, the removal of equivalent state
variables always results in a smaller BDD representation for the reachable state space which is also less
sensitive to the selected variable order. Because the detection technique does not rely on names to identify
equivalences between state variables, it also works in cases where different names are used in the specification
and the implementation. This can for example be the case when the correctness of a transistor-level
implementation has to be proven against a high-level design specification (see e.g. [7][8]). A similar problem
may also occur when both descriptions have different hierarchical structures, because then equivalent state
variables may have different hierarchical names. In some other cases the designer may not know which state
variables have been modified. For these reasons it is important to have a verification method that can detect
such equivalences automatically.

This paper is organized as follows. Section 2 first introduces some basic definitions and discusses symbolic
verification methods for finite state machines. Then it explains how a technique that exploits equivalent state
variables can be integrated with such methods. Section 3 discusses how equivalent variables can be detected
automatically with a minimum of extra effort. Some experimental results are presented in section 4.

2 Finite State Machine Verification

Definition 1 introduces the concept of a finite state machine. It slightly differs from the usual definition in that
it uses a set of state variables to define the notion of state instead of a set of states; this will enable a more
compact presentation of the technique to detect equivalent state variables. The set of boolean values is denoted
by B � { 0, 1} .

Definition 1

A finite state machine M is a 6-tuple (I, O, V, S0,
�

,�), where
 � I � (i1,..., im) is an ordered set of inputs;
 � O � (o1,..., op) is an ordered set of outputs;
 � V � (v1,..., vn) is an ordered set of state variables;
 � S0 � Bn is the non-empty set of initial states;
 � �

: Bn � Bm � Bn � (� 1,..., � n) is the next-state function;
 � � : Bn � Bm � Bp � (� 1,..., � p) is the output function.

A state of a finite state machine is a value assignment to its state variables. Because V is an ordered set, this
assignment is simply represented by a boolean vector of length |V|, i.e., the state space of M is Bn. The
reachable state space is the set of states which can be reached in zero or more steps from some initial state and is
denoted Reach(M).

If two finite state machines have identical sets of inputs and outputs, it is possible to compare their behaviour.
Then two FSMs are called functionally equivalent iff they produce the same sequence of output vectors for any
sequence of input vectors. To formalize this requirement, the so-called product machine of two FSMs is
defined.

Definition 2

Given two FSMs MA = (I, O, VA, SA,0,
�

A,� A) and MB = (I, O, VB, SB,0,
�

B,� B). The product machine
MA

� MB = (I, O, V, S0,
�

,�) is defined by
 � V � (vA,1,..., vA,nA

, vB,1,..., vB,nB
) ,

 � S0
� { (s1,..., snA 	 nB

) | (s1,..., snA
)
 SA,0, (snA 	 1,..., snA 	 nB

)
 SB,0} ,

 � �
(sA, sB, i) � (� A,1(sA, i),..., � A,nA

(sA, i), � B,1(sB, i),..., � B,nB
(sB, i)) ,

 � � (sA, sB, i) � (� A,1(sA, i) � � B,1(sB, i),..., � A,p(sA, i) � � B,p(sB, i)) .

Equivalence of FSMs can now be formulated as follows: two FSMs are functionally equivalent iff every
output of the corresponding product machine is assigned the value 1 in all its reachable states. In the sequel of
this paper, MA = (I, O, VA, SA,0,

�
A,� A) and MB = (I, O, VB, SB,0,

�
B,� B) represent the two FSMs which are

verified. The corresponding product machine is represented by M = (I, O, V, S0,
�

,�).

Sequential verification methods typically proceed as follows. They start with two FSMs which e.g. have been
extracted from circuit descriptions. The product machine is constructed and then its state space is traversed.
Figure 1 shows an example of a symbolic algorithm which can be used for this traversal. The algorithm is
based on a breadth-first calculation of the reachable state space. For every intermediate set of reached states it
is tested whether both machines are still equivalent. In an implementation of algorithm 1, all sets and functions
are represented by BDDs. The most important operation in the algorithm is the calculation of the image of a set
of states; this is the set of states which can be reached in a single step from the given set of states. Several
techniques have been proposed to implement this calculation efficiently (see e.g. [3][4][5][14]).

reached : �
 ; frontier : � S0 ;
do {

if (� s � frontier, i � Bm : � (s, i) � (1,..., 1))
generate counter-example and stop;

reached : � reached � frontier ;
frontier : � Image(� , frontier) \ reached ;

} while (frontier �
) ;

Fig. 1. Outline of a symbolic algorithm for state space traversal

Although symbolic algorithms can conceivably handle large FSMs with current BDD-based implementation
techniques, sequential verification is still not feasible for many FSMs of practical size. The major limitations
are the sizes of the BDD representations for the next-state function and the set of reached states, and the
required number of iterations. Therefore new techniques are needed to increase the feasibility of sequential
verification. This can be done by developing still more efficient state space calculation techniques. This paper
follows a complementary approach which is based on the application of a reduction technique.

The objective of reduction techniques is to minimize the size of the verification problem without changing the
outcome of the problem. This can be done in several ways. In [4], Cabodi et al. introduce the so-called general
product machine; some explicitly known relation between the state encodings of both machines is exploited to
construct a good encoding for the state space of this product machine; no methods are proposed to derive the
required relation between the state encodings automatically. In this paper we propose a technique which
exploits equivalent state variables. This idea has been applied independently in the industrial verification
system CVE developed at Siemens [12], where it is called state bit identification, and in the sequential
verification algorithm of the industrial synthesis system TIGER developed by Coudert, Madre and Touati [6].
In their algorithm, equivalent (and opposite) variables are detected on the fly during the state space traversal.

The next section describes a technique to detect equivalent state variables in the product machine before the
state space is traversed; it can be used as a preprocessing step for a symbolic traversal algorithm. This results in
a verification method as depicted in figure 2. The basic idea is to detect and prove the equivalence of state
variables before the state space is traversed. Whenever it is proven that two state variables have equal values in
all reachable states, both variables can be interchanged without affecting the behaviour of the product
machine. Therefore, one of them can be removed from the machine by substitution. The proposed technique
does not have the same computational limitations as a symbolic traversal algorithm, because it is not based on a
state space traversal. It forms an effective preprocessing step for such an algorithm, because it can be
implemented efficiently. It can however not be guaranteed that all equivalent variables are detected.

FSM A FSM B

calculation of
equivalent state variables

reduced
product machine

state space
calculation

yes/no

Fig. 2. Outline of the verification method

Although the proposed reduction technique is relatively simple, it can lead to significant improvements. The
advantages of removing equivalent state variables are twofold. First of all, it may cause the outputs of both
circuits to be expressed in the same state variables. This may provide enough information to already conclude
the equivalence of some or all of the outputs. The second advantage is of course that every variable that is
removed effectively reduces the size of the product machine. To further explain the corresponding advantages,
let’s consider the case where we have to verify two circuits with exactly the same state encoding. Then the state
space of the product machine can be written as:

Reach(M) � Reach(MA) � (vA,1 � vB,1 � � � � � vA,nA � vB,nB
) .

A reduction of at least a factor two [4] can be achieved for the BDD representation of the reachable state space
if the equivalent state variables are detected and removed before the state space is traversed. The condition
which expresses the equivalence of the state variables is very sensitive to the variable order that is used; it only
has a compact representation if equivalent variables are grouped together. Therefore the removal of equivalent
variables also leads to a more robust representation which is less sensitive to the selected variable order. Of
course, dynamic variable ordering can be used to automatically maintain the variable order. Especially the
sifting algorithm has proven to provide a good balance between the quality of the variable order and the
overhead in run-time [13]. Also when this algorithm is used, the removal of equivalent variables leads to a
more robust representations, because the pairs of equivalent (or in other words symmetric) variables cause the
sifting algorithm to easily get stuck in a local minimum; equivalent variables are typically grouped together
but the optimum position of this group may not be found without sifting the equivalent variables together [11].
It is difficult for a variable ordering algorithm to exploit the dependencies between equivalent variables
automatically, because equivalent state variables are only symmetric in the BDD for the reachable state space
and not in the BDDs for the next-state and output functions.

3 Detection of Equivalent State Variables

This section describes the technique to detect functionally equivalent state variables in a finite state machine. It
partitions the set of state variables into classes of functionally equivalent variables. More exactly, it calculates
an equivalence relation on the set of state variables which induces this partition. This particular equivalence
relation is called the variable correspondence relation. To guarantee its correctness, two conditions are
imposed on it which together form an inductive argument for the equivalence of the variables in the same class
of the partition. The first condition requires that equivalent variables always have the same initial value. The
second condition requires that if equivalent variables have the same value in the current state, they necessarily
have the same value in every next state. If these two conditions are satisfied, it can directly be concluded that all
equivalent variables necessarily have the same value in every reachable state. To express the condition that a
state conforms to a given relation, the variable correspondence condition is introduced.

Definition 3
Given an equivalence relation R : V � V � B. Then the variable correspondence condition RVC : Bn � B is
the predicate that defines whether a state conforms to R, i.e., whether equivalent variables are indeed assigned
the same value in this state:

RVC(s1,..., sn) � (� vj, vk � V : R(vj, vk) � sj � sk) .

The variable correspondence relation can now be defined as follows.

Definition 4
An equivalence relation R : V � V � B is a variable correspondence relation iff it satisfies the following two
conditions:�
 it holds in every initial state: � s � S0 : RVC(s) ,�
 it is invariant under the next-state function: � s � Bn, i � Bm : RVC(s) � RVC(� (s, i)) .

Note that the second condition in definition 4 is sufficient but not necessary for the equivalence of two
variables; it is chosen specifically because its evaluation does not require the reachable state space. As a
consequence also non-reachable states may be taken into account by this condition, and therefore it is not
guaranteed that all equivalent variables are indeed detected.

An important question for the applicability of the variable correspondence relation is whether there always
exists a unique solution. There may exist several variable correspondence relations for a FSM. The following
property shows that two such relations can always be combined to a single larger relation. Because there is
only a finite number of state variables, this means that there always exists a unique maximum variable
correspondence relation.

Property 5

If RA, RB : V � V � B are both variable correspondence relations, then the relation RA B : V � V � B
defined by

RA B(vj, vk) ! RA(vj, vk) " RB(vj, vk) .

is also a variable correspondence relation.

The method to calculate the maximum variable correspondence relation follows directly from definition 4. It
consists of a greatest fixed point computation. The first approximation R0 is based on the first condition of
definition 4:

R0(vj, vk) ! (# (s1,..., sn) $ S0 : sj % sk) .

Starting with R0, a series of approximations Rh can be calculated by applying the second condition of
definition 4:

Rh & 1(vj, vk) ! Rh(vj, vk) ' (# s $ Bn, i $ Bm : Rh,VC(s) � (j(s, i) % (k(s, i)) .

Since there is only a finite number of state variables, a fixed point is reached after a finite number of iterations,
i.e., at some point Rh ! Rh & 1. Then this Rh is by construction the maximum variable correspondence
relation. The maximum number of iterations is |V |) 1, because in every iteration, except the last one, at least
one new class is created.

Every Rh is an equivalence relation. Therefore it can be represented by the partition it induces. This partition is
stored explicitly. The refinement of a relation Rh to a relation Rh & 1 corresponds to splitting some classes of the
partition. This is done by checking if the next-state functions of the variables in the same class are equivalent
under the variable correspondence condition; this can be calculated with BDDs. The BDD representation of
the condition Rh,VC(s) is very sensitive to the variable order that is used, because its general form is
(t1 % u1 ' t2 % u2 ' t3 % u3 ' * * *) where the t’s and u’s are state variables. Therefore only the relevant
part of this condition is constructed for every comparison of two variables; just the state variables in the
support of the (j and (k concerned are taken into account.

The fixed point calculation can also be implemented as follows. From every class of equivalent variables, a
single variable is selected as the unique representative of that class, i.e., a function reph : V � V is chosen
which satisfies Rh(u, v) + (reph(u) ! reph(v)). Then the next-state functions are expressed in terms of the
selected variables. This way the variable correspondence condition is satisfied by construction and the
expression to refine an approximation Rh becomes:

Rh & 1(vj, vk) ! Rh(vj, vk) ' (# s $ Bn, i $ Bm : (j(reph(s), i) % (k(reph(s), i)) ,

where reph(s) ! (reph(s1),..., reph(sp)). When BDDs are used to represent the next-state functions, the main
advantages of this approach are that the BDD for the variable correspondence condition does not have to be

constructed and that less BDD variables are needed; the maximum number of variables needed to represent
state variables equals the number of classes of the maximum variable correspondence relation. Of course it is
necessary to recalculate the BDDs for the next-state functions after every iteration; this is not a significant
drawback because BDD packages cache the results of previous computations and therefore these
recalculations are typically performed very efficiently. Of course this technique is not restricted to BDD-based
verification methods. After all state variables are assigned a representative variable, the comparison of the
resulting next-state functions can be done with any combinational verification method. If the descriptions of
both FSMs have similar structures, it could be useful to apply a verification method which exploits these
similarities, such as e.g. presented in [1][9][10].

The efficiency of the fixed point computation can be improved with the following technique. It is based on
testing the second condition of definition 4 for only a limited number of states and input vectors. A signature is
calculated for every state variable by evaluating the next-state functions for some randomly chosen states and
input vectors; of course it is necessary that the chosen states conform to Rh. Then every class of the partition is
split into classes which only contain state variables with the same signature. This technique is very effective to
obtain a more accurate initial approximation R0 which reduces the number of iterations required to reach the
fixed point.

The presented method can easily be extended to also detect state variables which have opposite values in all
reachable states. This requires the following equivalence relation T : V , V - B:

T(vj, vk) . (/ (s1,..., sn) 0 S0 : sj 1 sk) 2 (/ (s1,..., sn) 0 S0 : sj 1 sk) .

All state variables equivalent under T can be given the same initial value by selectively complementing some
variables. Of course, the next-state and output functions have to be changed accordingly. After this
transformation, the presented fixed point computation can be applied to calculate the variable correspondence
relation.

The method can also be extended to detect state variables which have a constant value in all reachable states.
This requires the introduction of an extra function which defines if a variable always has the same value or not.
Then the variable correspondence condition can be strengthened with this information, and the correctness of
the function can be checked by testing whether the next-state function of a variable is constant under the
variable correspondence condition.

When the state encoding of a design has not been modified, the full generality of sequential verification is not
needed. If the correspondence between the state variables of both descriptions is known, the problem
essentially becomes a combinational verification problem. This correspondence is however not always
obvious. If for example the implementation has been extracted from a transistor level description (see e.g.
[7][8]), it cannot be assumed that the correspondence can be derived from the names of the state variables. The
maximum variable correspondence relation can be used to define this type of combinational equivalence
without requiring that the correspondence between the state variables is given explicitly.

Definition 6
Two FSMs MA and MB are combinationally equivalent iff the corresponding product machine M satisfies the
following condition:

/ s 0 Bn, i 0 Bm : RVC(s) - 3 (s, i) . (1,..., 1) ,

where R denotes the maximum variable correspondence relation of M.

As has been shown in this section, the maximum variable correspondence relation can be calculated by
repeatedly testing the equivalence of boolean functions. Therefore, it should not be very difficult to extend
existing combinational verification tools to also verify the combinational equivalence of FSMs as defined in
definition 6.

4 Experimental Results

This section presents the results of some preliminary experiments which have been performed with the
proposed technique to detect equivalent state variables. The method has been implemented in C++ using the
BDD package developed in our department; the sifting algorithm [13] is used to dynamically control the
variable order. All tests have been performed on a HP9000/735 workstation.

The verification method has been used to compare some circuits from the IWLS’91 benchmark set. Every
circuit is compared against an equivalent circuit from the benchmark set; if only one implementation is
available, a second implementation has been synthesized with the logic synthesis system SIS developed at the
University of California, Berkeley. The applied transformations only modify the combinational part of the
circuits; they include collapsing, factoring and technology mapping. The resulting circuits are identified by
adding a ‘c’ to their name. To avoid any coincidental similarities between the two circuit descriptions, the
order of the latches in every second description has been changed randomly. The results are shown in table 1.

Table 1. Experimental results for some IWLS’91 benchmarks

Circuits Nr. of
state vars

Extraction Expl. Cond. Impl. Cond. Nr.
of

iter.

Circuits Nr. of
state vars time

(s)
mem.
(kb)

time
(s)

mem.
(kb)

time
(s)

mem.
(kb)

Nr.
of

iter.

s208.1 – s208.1c 8 + 8 0.1 288 0.2 288 0.1 281 1

s298 – s298c 14 + 14 0.1 291 0.2 291 0.1 279 1

s344 – s349 15 + 15 0.1 297 0.5 362 0.1 285 1

s382 – s400 21 + 21 0.1 301 0.5 366 0.2 285 1

s386 – s386c 6 + 6 0.1 281 0.2 345 0.1 276 1

s420.1 – s420.1c 16 + 16 0.5 371 0.8 371 0.2 293 1

s444 – s444c 21 + 21 0.1 302 0.7 366 0.2 285 1

s510 – s510c 6 + 6 0.2 291 0.5 355 0.2 285 1

s526 – s526n 21 + 21 0.1 302 0.4 366 0.2 285 1

s641 – s713 19 + 19 1.7 388 2.4 388 0.2 304 1

s820 – s832 5 + 5 0.2 289 0.4 353 0.2 284 1

s838.1 – s838.1c 32 + 32 6.2 775 9.4 775 3.1 401 14

s953 – s953c 29 + 29 0.2 389 0.7 389 0.5 377 3

s1196 – s1238 18 + 18 0.5 352 0.9 352 0.8 355 1

s1423 – s1423c 74 + 74 17.4 862 77.1 1075 5.0 402 1

s1488 – s1494 6 + 6 0.4 347 1.2 347 0.4 277 1

s5378 – s5378c 164 + 163 23.6 710 197.3 9954 9.3 481 4

s9234.1 – s9234.1c 211 + 145 18.3 885 137.9 885 9.4 469 9

s13207.1 – s13207.1c 638 + 474 44.4 2807 ––– >50Mb 16.7 864 24

s15850.1 – s15850.1c 534 + 504 ––– >50Mb ––– >50Mb 435.6 2745 17

s38417 – s38417c 1636 + 1463 ––– >50Mb ––– >50Mb ––– >50Mb –––

s38584.1 – s38584.1c 1426 + 1260 98.8 20164 ––– >50Mb 88.2 1383 6

The column ‘extraction’ shows the run times and memory usage for building the BDDs for both FSMs. These
numbers are given for comparison. Memory usage only includes the memory used by the BDD package. The
column ‘expl. cond.’ shows the results of the algorithm which uses the correspondence condition explicitly to
calculate the maximum variable correspondence relation. The column ‘impl. cond.’ shows the results for the
algorithm which selects unique representatives for the state variables and thus satisfies the correspondence
condition implicitly. This requires that the BDDs for both FSMs are recalculated after every iteration of the
fixed point calculation. The last column shows the number of iterations required to reach the fixed point. Both
algorithms use signature calculations to obtain an initial approximation of the maximum variable
correspondence relation. Signatures are calculated by evaluating the next-state functions for 32 vectors in
parallel. This is repeated until the partition does not change during 16 successive runs.

The results clearly demonstrate that the maximum variable correspondence relation can be calculated very
efficiently with the algorithm that satisfies the correspondence condition implicitly. Benchmark s38584.1
with 1426 state variables is for example completely verified within 90 seconds. The algorithm only fails to
complete the calculations for the benchmark s38417, for which we have not been able to build BDDs within
the memory limit of 50 Mb. The efficiency of the algorithm is even more evident when the results are
compared to the run times and memory usage needed to build BDDs for both circuits separately. In almost all
cases it requires less memory because it assigns the same BDD variable to equivalent state variables.
Therefore more BDD nodes can be shared by both FSMs. Another important effect of this technique is that the
variable ordering algorithm is better capable of finding a good variable order; this is especially clear for the
benchmarks with more than 50 state variables. Of course, this also leads to shorter run times. The efficiency of
the algorithm which calculates the correspondence condition explicitly is acceptable for the smaller
benchmarks with up to about 32 state variables. It is however more sensitive to the variable order and therefore
it is not sufficiently robust for the larger benchmarks.

Table 2 gives an overview of the benchmarks for which the verification method also detects equivalent state
variables within a single circuit. The first two columns respectively show the name of the benchmark and the
total number of state variables. The next columns show the number of state variables that are not directly or
indirectly connected to an output, the number of state variables which have a constant value and the number of
state variables which are removed because they are duplicates of other variables. The column ‘nr. unconn. vars
after’ shows the number of state variables which initially seem to be directly or indirectly connected to an
output, but which become unconnected after the removal of constant and duplicate variables. The last column
gives the resulting number of state variables. Especially for the three largest benchmarks this number is
considerably less than the total number of state variables.

Table 2. Classification of the state variables for some IWLS’91 benchmarks

Circuit
Total nr.

vars
Nr. unconn.
vars before

Nr. const.
vars

Nr. dupl.
vars

Nr. unconn.
vars after

Nr. unique
vars

s641 19 0 4 1 0 14

s1423 74 0 0 1 0 73

s5378 164 0 0 1 0 163

s9234.1 211 66 3 13 0 129

s13207.1 638 21 74 174 106 263

s15850.1 534 10 54 18 16 436

s38584.1 1426 0 37 107 141 1141

The experimental results clearly demonstrate that the proposed method forms a robust extension of any
symbolic traversal algorithm. Of course, more experiments need to be performed to test the performance gain

when only some of the state variables are equivalent and therefore the state space of the reduced product
machine has to traversed. It is however clear that the technique does not introduce a significant overhead and
can have a very positive effect on the run time, the memory usage and the robustness of any BDD-based
method for FSM verification.

5 Conclusions and Future Research

This paper has presented a fully automatic technique to detect equivalent state variables for FSM verification.
It can easily be integrated with existing verification methods. The technique is based on the detection and
removal of equivalent state variables from the product machine before the state space is traversed. It is very
robust because the removal of equivalent state variables always simplifies the verification problem and the
proposed detection algorithm is very efficient; furthermore it can easily be extended to also handle opposite
and constant variables. Therefore it significantly extends the ability of existing verification methods to verify
FSMs with similar state encodings. The experimental results show that the maximum variable correspondence
relation can be calculated efficiently, especially when the variable correspondence condition is used implicitly
in the calculations. The maximum variable correspondence relation can also be used to define combinational
equivalence for FSMs with unknown correspondence between the state variables.

There are some aspects which require further research. More experiments need to be performed to test the
performance gain of the method when two FSMs partly have equivalent state variables. The repeated
calculation of BDDs for the next-state and output functions can probably be implemented more efficiently. It
could also be very interesting to experiment with other combinational verification methods to implement the
detection of equivalent state variables. A more challenging problem is the development of other efficient
automatic reduction techniques. One approach would be to take all internal points into account during the
detection of equivalences and not just state variables. This could lead to an efficient verification method for
retimed circuits.

Acknowledgements

We would like to thank Geert Janssen for his support and for the use of his BDD package.

References

[1] D. Brand: Verification of Large Synthesized Designs. Proc. IEEE/ACM Int. Conf. on Computer-Aided
Design, pp. 534–537, 1993

[2] J.R. Burch, et al.: Sequential Circuit Verification Using Symbolic Model Checking, Proc. 27th
ACM/IEEE Design Automation Conf., pp. 46–51, 1990

[3] J.R. Burch, et al.: Symbolic Model Checking for Sequential Circuit Verification, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 4, pp. 401–424, April 1994

[4] G. Cabodi, et al.: A New Model for Improving Symbolic Product Machine Traversal, Proc. 29th
ACM/IEEE Design Automation Conf., pp. 614–619, 1992

[5] O. Coudert, C. Berthet, and J.C. Madre: Verification of Synchronous Sequential Machines based on
Symbolic Execution, Proc. Workshop on Automatic Verification Methods for Finite State Machines, pp.
365–373, Lecture Notes in Computer Science vol. 407, 1989

[6] O. Coudert, private communication, March 1995

[7] P. Déverchère, et al.: Functional Abstraction and Formal Proof of Digital Circuits, Proc. European Conf.
on Design Automation, pp. 458–462, 1992

[8] A. Kuehlmann, A. Srinivasan, and D.P. LaPotin: Verity – A Formal Verification Program for Custom
CMOS Circuits, to be published in IBM Journal of Research and Development, 1995

[9] W. Kunz: HANNIBAL: An Efficient Tool for Logic Verification Based on Recursive Learning, Proc.
IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 538–543, 1994

[10] R. Mukherjee, J. Jain, and M. Fujita: VERIFUL: VERIfication using FUnctional Learning, Proc.
European Design and Test Conf., pp. 444–449, 1995

[11] S. Panda, F. Somenzi, and B. Plessier: Symmetry Detection and Dynamic Variable Ordering of Decision
Diagrams, Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, 1994

[12] M. Payer, private communication, March 1995

[13] R. Rudell: Dynamic Variable Ordering for Ordered Binary Decision Diagrams, Proc. IEEE/ACM Int.
Conf. on Computer-Aided Design, pp. 42–47, 1993

[14] H.J. Touati, et al.: Implicit State Enumeration of Finite State Machines using BDD’s, Proc. IEEE Int.
Conf. on Computer-Aided Design, pp. 130–133, 1990

