Detection of Equivalent State Variables
In Finite State M achine Verification

C.AJ.van Eijk and J.A.G. Jess

Eindhoven University of @chnology Department of Electrical Engineering
Design Automation Section,®. Box 513, 5600 MB Eindhoven, The Netherlands
Email: C.A.J.VEijk@ele.tue.nl and J.A.G.Jess@ele.tue.nl

Abstract

Thispaper proposes a new technique to detect equivaleniatetieles for finite state machine
verification. The technique can easily be integrated with existing verification methods and
significantlyextends the ability of these methods to handle finite state machines (WiiVs)
similar state encodings. This is of practical importance as itgadahe class of FSMs for
whichverification is feasible. The proposed technigae also be used to verify combinational
equivalenceof FSMs with unknown correspondence between the state variables. The
effectivenes®f the technique is shown by experimental results on well-known benchmarks
with up to 1426 state variables.

1 Introduction

This paper addresses the problem of verifying the equivalence of finite state machines. Impressive progress
hasbeen made in this area by the introduction of so-called symbolic technigues, which are based on the
applicationof binary decision diagrams (BDDSs) to traverse the state space (see e.g. [2][3][5][14]). Although
thesemethods can conceivably handleggliFSMs with current BDD-based implementation techniques, the
biggestproblem faced is still that of scale. The symbolic methods that have been proposed are based on an
implicit traversal of thetate space. A major drawback is their inability to exploit any similarities of the FSMs
undercomparison. These similarities can for example consist of functionally equivalent state variables in the
two FSMs. Because many design steps do not completely change the state encadaesigh, such
similaritiesare likely to occur in practice.

This paper proposes a fully automatic technique to detect equivalent state variables before the reachable state
spaceof the product machine is calculated, and discusses howlieciabegrated with existing verification
methods.The proposed technigue does not require extra information from the desighemasa robust
extensionof existing verification methods. As will be shown in section 2, the removal of equivalent state
variablesalways results in a smaller BDD representation for the reachable state space which is also less
sensitiveto the selectedariable orderBecause the detection technique does not rely on names to identify
equivalencebetween state variables, it algorks in cases where thfent names are used in the specification

and the implementationThis can for example be the case when the correctness of a traesistor
implementatiorhas to be proven against a high-level design specification (see e.g. [7][8]). A similar problem
may also occur when both descriptions havéedént hierarchicastructures, because then equivalent state
variablesmay have dferent hierarchical names. In some other cases the designer may not know which state
variableshave beemodified. For these reasons it is important to have a verification method that can detect
suchequivalences automatically

This paper is agganized as follows. Section 2 first introduces some basic definitions and discusses symbolic
verificationmethods for finite state machines. Thiggxplains how a technique that exploits equivalent state
variablescan be integrated with such methods. Section 3 discusse=gudvalent variables can be detected
automaticallywith a minimum of extra &brt. Some experimental results are presented in section 4.

2 Finite State Machine Verification

Definition 1 introduces the concept of a finite state machine. It slighflsrdifrom the usual definition in that

it uses a set of state variables to define the notion of state instead of a set of states; this will enable a more
compacpresentation of the technique to detect equivalent state variables. The set of boolean values is denoted
by B = {0, 1}.

Definition 1
A finite state machin® is a 6-tuple(l, O, V, §;,4,41), where
e | =(iy,...,im) is an ordered set of inputs;

* O = (04,...,0p) is an ordered set of outputs;

* V = (vq,...,Vp) is an ordered set of state variables;

* S, C B"is the non-empty set of initial states;

e A:B"xBM™—B"= (J,,...,0y) is the next-state function;
e A:B"xB™—BP = (1,,...,4p) is the output function.

A state of a finite state machine is a value assigntoéts state variables. Becaugés an ordered set, this
assignments simply represented by a boolean vector of lefgthi.e., the state space bf is B". The
reachablstate space is the set of states which can be reachedan mene steps from some initial state and is
denotedReach(M).

If two finite state machines have identical sets of ingdsoutputs, it is possible to compare their behaviour
Thentwo FSMs are called functionally equivalefitlifey produce the same sequence of owtpctiors for any
sequencef input vectors. @ formalize this requirement, the so-called product machine of two FSMs is
defined.

Definition 2

Given two FSMsM, = (I,0,Vy, Sp 0,404, and Mg = (1,0, Vg, Sg0,4p,41p). The product machine
My x Mg =(1,0,V, §,,4,41) is defined by

o V= (VA,l""vVA,nA’ val,...,vB,nB) ,

* S ={(51---1Sn,+ny) | (S1i--eiSn,) € Spoi (Sp, 41+ Sna4ng) € Sgob

o A(Sp Sp.l) = (6A,1(§A'D1-'-16A,nA(§AinéB,l(§Bi i_)w--aéB,nB(§Ba),

o A(sa S) = Apa(sad) = 1g4(Ss, Da-"J'A,p(§A’ i) = j’B,p(§B’).

Equivalenceof FSMs can now be formulated as follows: two FSMs are functionally equivdleveiy

outputof the corresponding product machine is assigned the value 1 in all its reachable states. In the sequel of
this papey M = (I, 0, Vp, Sy 0,4 a1 4) @andMg = (1, O, Vi, Sz, 45, 415) represent the two FSMs which are
verified. The corresponding product machine is representdd by(I,O,V, §;,4,1).

Sequentialerification methods typically proceed as follows. They start with two FSMs which e.g. have been
extractedrom circuitdescriptions. The product machine is constructed and then its state space is traversed.
Figurel shows an example of a symbolic algorithm whiah be used for this traversal. The algorithm is
basedn a breadth-first calculation of the reachable state space. For every intermediate set of reached states it
istested whether both machireee still equivalent. In an implementation of algorithm 1, all sets and functions

are represented by BDDs. The most important operation in the algorithm is the calculatiomageloé a set

of states; this is the set of states which can be reached in a single step from the given set of states. Severa
techniquesave been proposed to implement this calculatificiexfitly (see e.g. [3][4][5][14]).

reached : = () ; frontier := S ;
do {
if (s e frontier,i € B™: A(s,i) = (1,...,1))
generate counter-example and stop;
reached : = reached U frontier ;
frontier : = Image(4, frontier) \ reached ;
} while (frontier = 0) ;

Fig. 1. Outline of a symbolic algorithm for state space traversal

Althoughsymbolic algorithms can conceivably handlgéaFSMs witlrcurrent BDD-based implementation
techniques, sequential verification is still not feasible for many FSMs of practical size. The major limitations
arethe sizes of the BDD representations tfee next-state function and the set of reached states, and the
requirednumber of iterations. Therefore new techniques are needed to increase the feasibility of sequential
verification. This can be done by developing still morigogtnt state space calculation techniques. This paper
follows a complementary approach which is based on the application of a reduction technique.

Theobjective of reduction techniques is to minimize the size of the verification problem without changing the
outcome of the problem. This can be done in several ways. In [4], Cabodligbdlcethe so-called general
productmachine; some explicitly known relation between the state encodings of both machines is exploited to
constructa good encoding for the state space of this product machine; no methods are proposedhe derive
requiredrelation between the state encodings automatic#iythis paper we propose a technique which
exploits equivalent state variables. This idea has been applied independently in the industrial verification
systemCVE developed at Siemens [12], where it is caffeate bit identification, and in the sequential
verificationalgorithm of the industrial synthesis system TIGER developed by Coudert, Madi@uatid d].

In their algorithm, equivalent (and opposite) variables are detected on the fly during the state space traversal.

The next section describes a technique to detect equivalent state variables in the product machine before the
statespace is traversed; it can be used as a preprocessing step for a symbolic traversal algorithm. This results in
a verification method as depicted in figure 2. The basic idea is to detect and prove the equivalence of state
variablesbefore the state spacdriaversed. Whenever it is proven that two state variables have equal values in

all reachable states, botfariables can be interchanged withoueeting the behaviour of the product
machine Therefore, one of them can be removed from the machine by substitution. The proposed technique
doesot have the same computational limitations as a symbolic traversal algorithm, because itis notbased on a
statespace traversal. It forms anfesftive preprocessing step for such an algorithm, because it can be
implementeckfiiciently. It can however not be guaranteed that all equivalent variables are detected.

calculation of
equivalent state variables
v

reduced
product machine

state space
calculation

yes/no

Fig. 2. Outline of the verification method

Althoughthe proposed reduction technique is relatively simple, it can lead to significant improvérhents.
advantagesf removing equivalent state variables are twofold. First of all, it may cause the outbotls of
circuitsto be expressed in the same state variables. This may provide enough information tcatreadg

the equivalence of some or all of the outpdike second advantage is of course that every variable that is
removeceffectively reduces the size of the product machindufther explain the corresponding advantages,

let's consider the case where we have to verify two circuits with exactly the same state encoding. Then the state
spaceof the product machine can be written as:

Reach(M) = Reach(Mp) A (Va3 = Vg1 A .. A Van, = vB’nB) .

A reduction of at least a factor ty4j can be achieved for the BDD representation of the reachable state space

if the equivalent state variables are detected and removed before tispatates traversed. The condition
whichexpresses the equivalence of the state variables is very sensitive to the variable order that is used,; it only
hasa compact representation if equivalent variables are grouped togékrefore the removal of equivalent
variablesalso leads to more robust representation which is less sensitive to the selected variabl®brder
course dynamic variable ordering can be used to automatically maintain the variableEspiecially the

sifting algorithm has proven to provide a good balance between the quality of the vardgdyland the
overheadn run-time [13]. Also when this algorithm is used, the removalquiivalent variables leads to a
morerobust representations, because the pairs of equivalent (or in other words symmetric) varialites cause
sifting algorithm to easily get stuck in a local minimum; equivalent variables are typically grouped together
butthe optimum position of this group may not be fowitiout sifting the equivalent variables togethdr[1

It is difficult for a variable ordering algorithm to exploit the dependencies between equivalent variables
automaticallybecause equivalent state variables are only symmetric in the BDD for the reachable state space
andnot in the BDDs for the next-state and output functions.

3 Detection of Equivalent State Variables

Thissection describes the technique to detect functionally equivalent state variables in a finite state machine. It
partitionsthe set of state variables into classes of functionally equivalent variables. More écadtylates
anequivalence relation on the set of state variables which induces this partition. This particular equivalence
relationis called the variable correspondence relatiangliaranteets correctness, two conditions are
imposednit which together form an inductivegarment for the equivalence of the variables in the same class

of the partition. The first condition requires that equivalent variables always have the same initial value. The
seconacondition requires that if equivalent variables have the same value in the current state, they necessarily
havethe same value in every next state. If these two conditions are satisfied, it can directly be concluded that all
equivalentvariables necessarily have the same valexé@mny reachable stateo €xpress the condition that a
stateconforms to a given relation, the variable correspondence condition is introduced.

Definition 3
Givenan equivalence relatidR: V x V — B. Then the variable correspondence condiip : B" — Bis

thepredicate that defines whether a state conforrsite., whetheequivalent variables are indeed assigned
the same value in this state:

Ryc(Sy,---,Sn) = (VVj,Vk eV: R(Vj,vk) -5 = S) -
The variable correspondence relation can now be defined as follows.

Definition 4
An equivalence relatioR : V x V — Bis a variable correspondence relatidit gatisfies the following two
conditions:

* it holds in every initial stated s € Sy: Ry(9) ,
* itis invariant under the next-state functidfs € B",i € B™: R(s) = Ry (s 1)) -

Note that the second condition in definition 4 isfsuént but not necessarpr the equivalence of two
variables;it is chosen specifically because its evaluation does not requiredbleable state space. As a
consequencalso non-reachable statemy be taken into account by this condition, and therefore it is not
guaranteedhat all equivalent variables are indeed detected.

An important question for the applicability of the variabterespondenceelation is whether there always
existsa unique solution. There may exist several variable correspondence réatRSM. The following
propertyshows that two such relations calways be combined to a singledar relation. Because there is

only a finite number of state variables, this means that there always exists a unique maximum variable
correspondenceelation.

Property 5
If Ry, Rg:V x V — B are both variable correspondence relations, then the reRjjgpg:V x V—B
definedby

Rav B(ijvk) = RA(Vj:Vk) \Y% RB(Vj,Vk) .
is also a variable correspondence relation.

Themethod to calculate the maximum variable correspondence relation follows directlyeffioition 4. It
consistsof a greatest fixegoint computation. The first approximati®y is based on the first condition of
definition 4:

Ro(VisVid = (V(Sp,--,8n) ESi§ = 8) -

Startingwith R,, a series of approximatiorf3, can be calculated by applying the second condition of
definition 4:

Rh+1(Vj Vi) = Rp(vi,vid A (Vs e B",i € B™: Ryyc(® — 0;(s) = d(s))) -

Sincethere is only a finite number of state variables, a fixed point is reached afteraufimtter of iterations,
l.e., at some poinR, = R, ;. Then thisR is by construction the maximum variable correspondence
relation.The maximum number of iterationg | + 1, because in every iteration, except the last oheast
onenew class is created.

EveryR,, is an equivalence relation. Therefore it can be represented by the partition it induces. This partition is
storedexplicitly. The refinement of a relatidR, to a relatiorR, , ; corresponds to splitting some classes of the
partition. This is done by checking if the next-state functions of the variables in the same class are equivalent
underthe variable correspondencendition; this can be calculated with BDDs. The BDD representation of

the condition Ry \,c(s) is very sensitive to the variable order that is used, because its general form is
(t; =u; A t, = U, Aty = ug A ...) where thel’s andu’s are state variables. Therefore onlyrélevant

part of this condition is constructed for every comparison of two variables; just the state varidhkes in
supportof theéj andd, concerned are taken into account.

Thefixed point calculation can also be implemengsdollows. From every class of equivalent variables, a
singlevariable is selected as the unique representative of that class, i.e., a fugm{iod — V is chosen

which satisfiesR, (u, v) <> (rep,(u) = rep,(v)). Then the next-state functions are expressed in terms of the
selectedvariables. This way the variable correspondence condition is satisfied by construction and the
expressiorto refine an approximatioR;, becomes:

R 1(vj, Vi) = RV, vid A (Vs e BN i € B™: 6,(repp(9),1) = O, (repy(s), D) ,

whererep(s) = (rep,(sy. ..., rep,(sy))- When BDDs are used to represent the next-state functions, the main
advantagesf this approach are that the BDD for the variable correspondendgion does not have to be

constructednd that less BDD variables are needed; the maximum number of variables needed to represent
statevariables equals the number of classeéb®@maximum variable correspondence relation. Of course itis
necessaryo recalculate the BDDs for the next-state functions after every iteritisnis not a significant
drawback because BDD packages cache tesults of previous computations and therefore these
recalculationsre typically performed veryfidiently. Of course this technique is not restricted to BDD-based
verification methods. After all state variables are assigned a representative variable, the comparison of the
resultingnext-state functions can be done with any combinational verification method. If the descriptions of
both FSMs have similar structures, it could be useful to applgriication method which exploits these
similarities,such as e.g. presented in [1][9][10].

The eficiency of the fixed point computation can be improved with the following technique. It is based on
testingthe second condition difinition 4 for only a limited number of states and input vectors. A signature is
calculatedor everystate variable by evaluating the next-state functions for some randomly chosen states and
inputvectors; of course it is necessary that the chosen states confeyriften every class of the partition is
splitinto classes which only contain state variables with the same signature. This techraguefisctive to

obtaina more accurate initial approximati®y which reduces the number of iterations required to reach the
fixed point.

The presented method can easily be extended to also detect state variables which have opposite values in al
reachablestates. This requires the following equivalence relafiol x V — B:

TV V) = (V (SpnS) €S:5=95) V (Y (S5 € i85 =5) .

All state variables equivalent undecan be given the same initial value by selectively complementing some
variables.Of course, the next-state and output functions have to be chawgeddingly After this
transformationthe presented fixed point computation can be applied to calculate the variable correspondence
relation.

Themethod can also be extended to detect state variables which have a constant value in all reachable states
Thisrequires the introduction of an extra function which defines if a variable always has the same value or not.
Thenthe variable correspondence condition can be strengthened with this information, and the correctness of
the function can be checked by testing whether the next-state function of a variable is constant under the
variablecorrespondence condition.

Whenthe state encoding of a design has not been modified, the full generality of sequential verification is not
needed.If the correspondence between the state variables of both descriptiomswis, the problem
essentiallypecomes a combinational verification problem. This correspondence is however not always
obvious.If for example the implementation has been extracted from a transistor level description (see e.g.
[71[8]), it cannot be assumed that the correspondence can be derived from the names of the state variables. The
maximumvariable correspondence relation can be used to define this type of combinational equivalence
without requiring that the correspondence between the state variables is given explicitly

Definition 6
Two FSMsM , andMg arecombinationally equivalent iff the corresponding product machiMesatisfies the
following condition:
Vse B"i e B":Ry(9) = A(si) = (1,...,1),
whereR denotes the maximum variable correspondence relatith of

As has been shown in this section, the maximum variable correspondence relation can be calculated by
repeatedlytesting theequivalence of boolean functions. Therefore, it should not be véiguttifo extend
existingcombinational verification tools to also verify the combinational equivalehE8Ms as defined in
definition 6.

4 Experimental Results

This section presents the results of some preliminary experiments which havpdrggmed with the
proposedechnique to detect equivalent state variables. The method has been implemented in C++ using the
BDD package developed in our department; the sifting algorithm [13] is used to dynamically ttantrol
variableorder All tests have been performed on a HP9000/735 workstation.

The verification method has beersed to compare some circuits from the IWLS’91 benchmark set. Every
circuit is compared against an equivalent circuit from the benchmark set; if only one implementation is
available a second implementation has been synthesized with the logic synthesis3gsteweloped at the
University of California, BerkeleyThe applied transformations only modify the combinational part of the
circuits;they include collapsing, factoring and technology mapping. The resulting circuits are identified by
addinga ‘c’ to their name. @ avoid any coincidental similarities between the tivouit descriptions, the
orderof the latches in every second descriptias been changed randondife results are shown in table 1.

Table 1. Experimental results for some IWLS'91 benchmarks

Extraction Expl. Cond. Impl. Cond. Nr.

Circuits stgtréc\)/fars time | mem. | time | mem. | time | mem. _of

(s) (kb) (s) (kb) (s) (kb) iter.

s208.1 —s208.1c 8+8 0.1 288 0.2 288 0.1 281 1
5298 — s298c 14 + 14 0.1 291 0.2 291 0.1 279 1
s344 —s349 15+ 15 0.1 297 0.5 362 0.1 285 1
s$382 —s400 21+21 0.1 301 0.5 366 0.2 285 1
5386 — s386¢C 6+6 0.1 281 0.2 345 0.1 276 1
s420.1 —s420.1c 16 + 16 0.5 371 0.8 371 0.2 293 1
s444 — s444c 21+21 0.1 302 0.7 366 0.2 285 1
s510 — s510c 6+6 0.2 291 0.5 355 0.2 285 1
s526 — s526n 21+21 0.1 302 0.4 366 0.2 285 1
s641 —s713 19 +19 1.7 388 2.4 388 0.2 304 1
s820 —s832 5+5 0.2 289 0.4 353 0.2 284 1
$838.1 —s838.1c 32+32 6.2 775 9.4 775 3.1 401 14
s953 — s953c 29 + 29 0.2 389 0.7 389 0.5 377 3
s1196 — s1238 18 + 18 0.5 352 0.9 352 0.8 355 1
$1423 —s1423c 74 + 74 17.4 862 | 77.1 1075 5.0 402 1
51488 — s1494 6+6 0.4 347 1.2 347 0.4 277 1
s5378 — s5378c 164 + 163 23.6 710| 197.3 9954 9.3 481 4
§9234.1 —s9234.1c | 211 + 145 18.3 885| 137.9 885 9.4 469 9
s13207.1 —s13207.1q 638 +474 44.4 2807 ——| >50Mb| 16.7 864 | 24
s15850.1 — s15850.1¢ 534 + 504 ——| >50Mb| ——| >50Mb| 435.6 2745| 17
s38417 —s38417c | 1636 + 1463| ——| >50Mb| —| >50Mb| ——| >50Mb | —
s38584.1 — s38584.1g 1426 + 1260 98.8| 20164, —| >50Mb| 88.2 1383 6

Thecolumn ‘extraction’ shows the run times and memory usage for building the BDDs for both FSMs. These
numbersare given for comparison. Memangage only includes the memory used by the BDD package. The
column‘expl. cond.” shows the resultstbie algorithm which uses the correspondence condition explicitly to
calculatethemaximum variable correspondence relation. The column ‘impl. cond.” shows the results for the
algorithmwhich selects unique representatives for the state variables and thus satisfies the correspondence
conditionimplicitly. This requires that the BDDs for both FSMs are recalculated after every iteration of the
fixed point calculation. The last column shotlve number of iterations required to reach the fixed point. Both
algorithms use signature calculations to obtain an initial approximation of the maximum variable
correspondenceelation. Signatures are calculated by evaluating the next-state functi@®s\fectors in

parallel. This is repeated until the partition does not change during 16 successive runs.

Theresults clearhdemonstrate that the maximum variable correspondence relation can be calculated very
efficiently with the algorithm that satisfies the correspondence condition impliBiglgchmark s38584.1

with 1426 state variables is fexample completely verified within 90 seconds. The algorithm only fails to
completethe calculations for the benchmark s38417, for which we have not been able to build BDDs within
the memory limit of 50 Mb. The &tiency of the algorithm is even more evident when the results are
comparedo the run times and memory usage needéditd BDDs for both circuits separatelg almost all

casesit requires less memory becauseadisigns the same BDD variable to equivalent state variables.
Thereforemore BDD nodes can be shared by both FSMs. Another imporfisett@ffthis technique is that the
variableordering algorithm is better capable of finding a good variable order; this is especially clear for the
benchmarksvith more than 50 state variables. Of course, this also leads to shorter run timefici€heyebf

the algorithm which calculates the correspondence condition explicitly is acceptable for the smaller
benchmarksvith up to about 32 state variables. It is however more sensitive to the variable order and therefore
it is not suficiently robust for the layer benchmarks.

Table?2 gives aroverview of the benchmarks for which the verification method also detects equivalent state
variableswithin a single circuit. The first two columns respectively show the name of the benchmark and the
total number of state variables. The next columns show the number of state variables that are not directly or
indirectly connected to an output, the number of state variables which have a constant value and the number of
statevariables which are removed because they are duplicates of other variables. The coluroorint vars

after shows the number of state variabbdsich initially seem to be directly or indirectly connected to an
output,but which become unconnected afterrr@oval of constant and duplicate variables. The last column
givesthe resulting number of state variables. Especially for the thrgestalbenchmarkghis number is
considerablyess than the total number of state variables.

Table 2. Classification of the state variables for some IWLS'91 benchmarks

o Total nr Nr. unconn.| Nr. const. Nr. dupl. Nr. unconn.| Nr. unique
Circuit vars vars before vars vars vars after vars
s641 19 0 4 1 0 14
s1423 74 0 0 1 0 73
s5378 164 0 0 1 0 163
s9234.1 211 66 3 13 0 129
s13207.1 638 21 74 174 106 263
s15850.1 534 10 54 18 16 436
s38584.1 1426 0 37 107 141 1141

The experimentakesults clearly demonstrate that the proposed method forms a robust extension of any
symbolictraversal algorithm. Of course, more experiments need to be performed to test the performance gain

whenonly some of the state variables are equivalent and therefore the state gpacedficed product
machinehas to traversed. It is however clear that the technique does not introduce a significant overhead and
canhave a very positive f&fct on the run time, the memory usage and the robustness of any BDD-based
methodfor FSM verification.

5 Conclusions and Future Research

Thispaper has presented a fully automatic technique to detect equivalent state variables for FSM verification.
It can easily be integrated with existing verification methods. The technitpasesl on the detection and
removalof equivalenstate variables from the product machine before the state space is traversed. It is very
robustbecause the removal of equivalent state variables always simplifies the verification problem and the
proposedietection algorithm is veryfidient; furthermore it can easily be extended to also hayppesite
andconstant variables. Therefore it significargitends the ability of existing verification methods to verify
FSMswith similar state encodings. The experimental results show that the maximum \coreddpondence
relationcan be calculatedféefiently, especially when the variable correspondence condition is used implicitly

in the calculations. The maximum variable correspondence relation can also be used to define combinational
equivalencdor FSMs with unknown correspondence between the state variables.

Thereare some aspects which require further research. More experimeeqtso be performed to test the
performancegain of the method when two FSMs partly have equivalent state variables. The repeated
calculationof BDDs for the next-state and output functions can probably be implenmeatedficiently. It
couldalso be very interesting to experiment with other combinational verification methods to implement the
detectionof equivalent state variables. A more challenging probletheésievelopment of otherfigient
automaticreduction techniques. One approach would be to take all internal pointeaaont during the
detectionof equivalences and not just state variables. This could leaddficient verification method for
retimedcircuits.

Acknowledgements

We would like to thank Geert Janssen for his support and for the use of his BDD package.

References
[1] D.Brand: \érification of Lage Synthesized Designs. Proc. IEEE/ACM @dnf. on ComputeAided
Design,pp. 534-537, 1993

[2] J.R.Burch, et al.: Sequential Circuite¥ification Using Symbolic Model Checking, Proc. 27th
ACM/IEEE Design Automation Conf., pp. 46-51, 1990

[3] J.R.Burch, etal.: Symbolic Model Checking for Sequential Circarification, IEEE Tansactions on
ComputerAided Design of Integrated Circuits and Systems, vol. 13, no. 4, pp. 401-424, April 1994

[4] G. Cabodi, et al.: A NewModel for Improving Symbolic Product MachineaVersal, Proc. 29th
ACM/IEEE Design Automation Conf., pp. 614-619, 1992

[5] O. Coudert, C. Berthet, antiC. Madre: ¥rification of Synchronous Sequential Machines based on
SymbolicExecution, Proc. \6fkshop on Automaticéfification Methods for Finite State Machines, pp.
365—-373Lecture Notes in Computer Science vol. 407, 1989

[6] O. Coudert, private communication, March 1995

[71 P Dévercheére, etal.: Functional Abstraction and Formal Prdoiyital Circuits, Proc. European Conf.
on Design Automation, pp. 458-462, 1992

[8] A. Kuehlmann, A. Srinivasan, and DIRPotin: \érity — A Formal \rification Program for Custom
CMOS Circuits, to be published in IBM Journal of Research and Development, 1995

[9] W. Kunz: HANNIBAL: An Efficient Tool for Logic \érification Based ofRecursive Learning, Proc.
IEEE/ACM Int. Conf. on Computehided Design, pp. 538-543, 1994

[10] R. Mukherjee, J. Jain, and M. Fuijita: VERIFUL: VERIfication usiRgnctional Learning, Proc.
EuropearDesign and @st Conf., pp. 444—-449, 1995

[11] S.Panda, FSomenzi, and B. Plessier: Symmetry Detection and Dynaamiable Ordering of Decision
DiagramsProc. IEEE/ACM Int. Conf. on Comput&ided Design, 1994

[12] M. Payer private communication, March 1995

[13] R.Rudell: Dynamic ¥riable Ordering for Ordered BinaBecision Diagrams, Proc. IEEE/ACM Int.
Conf.on ComputeAided Design, pp. 42-47, 1993

[14] H.J. Touati, et al.: Implicit State Enumeration of Finite State Machines using 8[Poc.|EEE Int.
Conf.on ComputeAided Design, pp. 130-133, 1990

