492 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Short Papers

Buffer Insertion With Adaptive Blockage Avoidance

Jiang Hu, Charles J. Alpert, Stephen T. Quay, and Gopal Gandhamﬁ
4

Abstract—Buffer insertion is a fundamental technology for very large
scale integration interconnect optimization. This work presents the
repeater insertion with adaptive tree adjustment (RIATA) heuristic that
directly extends van Ginneken'’s classic algorithm to handle blockages in
the layout. Given a Steiner tree containing a Steiner point that overlaps
a blockage, a local adjustment is made to the tree topology that enables
additional buffer insertion candidates to be considered. This adjustment
adapts to the demand on buffer insertion and is incurred only when it
facilitates the maximal slack solution. RIATA can be combined with any
performance-driven Steiner tree algorithm and permits various solution
search schemes to achieve different soluti_on quality a_nd runtir_ne trade_o’rfs. slack: -69.6 4 V, slack- -11.4
Experiments on several large nets confirms that high-quality solutions
can be obtained through this technique with greater efficiency than © (@
simultaneous approaches.

slack: 33.44V,
®)

Index Terms—Buffer insertion, deep submicrometer, interconnect,
layout, physical design, very large scale integration.

|. INTRODUCTION

Buffer insertion is now widely recognized as a key technology for
improving very large scale integration interconnect performance. Cony
[4] projects that as many as 800 000 buffers will be required for designs
in 50-nm technologies. As design complexity increases, designers Bikg 1. Steiner tree and buffer solutions on a three-pin net with one buffer
relying on an increasing number of IP cores, large memory arrays, dherckage.
hierarchical components, i.e., designs are becoming “chunkier.” For

a buffer insertion technique to be effective, it must be fully aware ¢fyffer insertion with location restrictions. RMP is designed for the
its surrounding blockage constraints while also being efficient enougliffer block methodology [5] for which the number of legal buffer lo-
to quickly process thousands of nets. In the buffer insertion literatuggions is quite limited. It works on a grid graph that is constructed
van Ginneken's dynamic programming-based algorithm [13] has g5y adding horizontal and vertical lines through each potential buffer
tablished itself as a classic in the field. locations to the Hanan grid. It not only explores almost every node on
Prior to buffer insertion, several large area chunks may already @ grid in tree construction but also considers many sink combinations
occupied by macro or IP blocks for which wires can be routed over thespsolutions. Consequently, RMP tends to be slow when either the
blocks, but buffers cannot be inserted inside the blocks. We call thgggnber of net pins or legal buffer locations is large. Nevertheless, RMP
regions “buffer blockages.” For example, Fig. 1(a) shows a Steiner trggnerally yields near optimal solutions in term of timing performance.
with thrge-plns and a buffer blockage. Let the required arrival timggore recently, Tangt al. suggested a graph-based algorithm [12] on a
for the sinks berat(vi) = 200 andrat(vz) = 100. If the blockage gimjlar problem. While more efficient than RMP, it can optimize only
is ignored, one can obtain a good solution as shown in Fig. 1(b). Hefige maximum sink delay rather than the minimum slack.
the buffer acts to decouple the load of the branctrom the more pjtficult buffering problems occur not just with large nets but also
critical sink v2. Of course, in practice, one cannot ignore the buffefhen sink polarity constraints are present. Alpral. developed the
blockage and a solution other than that in Fig. 1(b) must be soughtelf tfer-aware” C-Tree heuristic [3] to be used as a precursor to van
one restricts the solution space to the existing Steiner topology, the t¥gneken's algorithm. However, the method is not “blockage-aware.”
best solutions are shown in Fig. 1(c) and (d), but neither solution megts sojve this one could first run C-Tree, then invoke the algorithm of
the required timing constraints. [2], which performs local rerouting to avoid the blockages without
~ The authors of [9], [10], and [14] proposed optimal algorithms 0Bqqing too much wiring. Then, this modified tree is passed to van
finding & minimum delay bufferedathwith buffer blockages. In [6], Ginneken's buffer insertion algorithm. For example, this approach
Cong and Yuan proposed a dynamic programming algorithm, call@giq obtain the buffered solution in Fig. 1(e). However, a carefully
recursively merging and pruning (RMP), to handle the multisink n@bnstructed timing-driven topology can be destroyed by these local

topology changes, making the final slack significantly worse than not
Manuscript received May 31, 2002; revised September 29, 2002. This papéning local rerouting at all.

was recommended by Guest Editor S. S. Sapatnekar. Hence, despite all the work in this field, there is still no fast and
~J. Hu is with the Department of Electrical Engineering, Texas A&M Univereffective solution for multisink nets. We seek an algorithm that can
sity, College Station, TX 77843 USA (e-mail: jianghu@ee.tamu.edu). find the solution in Fig. 1(f) for our example. This optimal solution for

USCA J. Alpert and S. T. Quay are with IBM Corporation, Austin, TX 7875E?'naximizing the minimum slack may be obtained by simply sliding the

G. Gandham is with IBM Corporation, Hopewell Junction, NY 12533 usabuffer insertion solution in Fig. 1(b) to its closest legal location. While
Digital Object Identifier 10.1109/TCAD.2003.809647 an approach like this works for this example, it fails for a larger-sized

0278-0070/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003 493

tree with multiple branching nodes because the proper buffer insertion w has a resistance oR and capacitance&”, we can get
solution for one branching node relies on the buffer solution for another ci(w) = ¢;(v) + C andg; (w) = ¢;(v) — R(C/2 + ¢i(v)) for
branching node. Therefore, moving each buffer out of blockage indi- each(c;(v),¢;(v)) € S(v), and obtainS(w) from the solution
vidually can ruin the integrity of the buffer insertion solution. More- ‘
over, if a buffer is moved too far away from its original location, the
solution quality may degrade beyond repair. AddBuffer(S(v)): Insert buffer a and add the new candidate
Consequently, we propose to handle blockages during buffer inser- into S(v). If a bufferb has an input capacitanes, output resis-
tion directly within van Ginneken’s algorithm. Our technique adjusts tancer, and intrinsic delay,, we can obtair; 1,.¢(v) = ¢, and
a given tree topology according to the demand on buffer insertion, and @i vur(v) = i (v) —rpei (v) — 1y, for each(c,'('v), qi(v)) € S(v)
such adjustments only occur when it facilitates the maximal slack solu-
tion. This technique can be used with any performance-driven Steiner
tree algorithm. Experimental results show that we can obtain greater i .but into S(v).
efficiency than methods that use the entire Hanan grid. * Merge (Si(v),S-(v)): Merge solution set from left child
The remainder of the paper is organized as follows. Section Il for- of v to the solution 'set from the right child of to obtain a
mulates the problem we wish to solve and reviews van Ginneken’s al- merged solution sef(v). For a solution(cj,left (v), ¢ 10 ()
gorithm. The algorithm is described in Section Ill. We show the exper-
imental results in Section IV and conclude this paper in Section V.

pairs (ci(m), ¢i(w)) Vi,

and add the pai(ci,buf(v),qi,buf(v)) Y ¢ with the maximum

from the left child and a solutior(ck,right(w),qk,right(v)

from the right child, the merged SO|uti06c,-('U),qi(’U)) is
Il. PRELIMINARIES obtained through letting;(v) = cjier(v) + ¢ righe(v) and

For the Steiner tree construction, Bt....... represent the set of ¢i(v) = min { g;1efe(v), Gk right (V)).
nodes in the tree other than the source and sinks. The problem we ads PruneSolutiong S(v)): Remove any solutios; € S(v) that is

dress is formulated as follows. dominated by any other soluticn € S(v).

.Problem Formullatlon Given a net {1.0’ VL U2see e Un) After a set of candidate solutions are propagated to the source, the
with source vg, sinks vi,...,v,, load capacitances(v;), and o .
solution with the maximum required arrival time is selected for the final

required arrival timey(v;) for eac_h sinko; € N, a set of rectangles solution. For a fixed routing tree, this algorithm can find the optimal
R = {ry,re,...rx} representing buffer blockages, and a buffer

)) . lution i %) time if th ins in thi f i
rary 5= {11111 0 8 bullered St veB(1-) soumon 101) e et st e i e, e do e
whereV = N U Viyernal @ndE spans every node Wi such that the g o P ’

required arrival time at the source is maximized.
The formulation is similar to the formulation for RMP [6] except that I1l. REPEATER INSERTION WITH ADAPTIVE TREE

a set of legal buffer locations is given in RMP instead of a set of buffer ADJUSTMENT (RIATA) ALGORITHMS

blockages. To transform our formulation to that proposed in [6], we c@Q Strategy

extend the borders of blockages over a Hanan grid and label each no

on the new grid graph as either a legal or infeasible buffer location. . e .
conquer, i.e., partitioning a complex problem into a set of subproblems

We adopt the Elmore delay model [8] for interconnect andR&h . L -
switch model for gate delays. We assume that the given routing tf emanageable scales. Such partitioning can be performed on either

T(V, E)isabinary tree, i.e., every internal node has no more than t\,ﬁ ysical or design flow aspects. For gxample, alarge net (.:E.in l.)e phys-
children and that every sink has degree one. Any routing tree can'B%”y clustered into smaller nets as in C-Tree. Such partitioning not
y speeds up the problem-solving process, but also isolates subprob-

easily transformed to satisfy both conditions by inserting zero-lengf! .) .
pseu)(lzlo edges fy y 9 glems according to their natures so that scattered targets can be avoided

Since we propose to extend the van Ginneken'’s algorithm to direcﬁgd the qptimization can_be W?” focused. Separating the Steiner tr_ee
handle buffer blockages, we first overview the algorithm to form sonstruction from buffer insertion procedure is an example of parti-

basis for the remainder of the discussion. Van Ginneken’s algorith hing the deglgn flow. An initial Stelr)gr tree constrgctlop can l".mt
the buffer solution search along an anticipated good direction. A direc-

proceeds bottom-up from the leaf nodes along a given tree topolo . . - . .
toward the source node. A set of candidate solutions is computed pal search is obviously more efficient than the simultaneous routing
each node during this process. A candidate solution at anidehar- and buffer insertion which is an implicitly brute-force search, even
acterized by the load capacitande) seen downstream and the re- though the sgarch may mtelllge_n_tly prune some unnecessary ca_mdldate
solutions. This design flow partitioning is shown to be effective in the

quired arrival timeg(v) at nodev. We use a pais = (c(v),¢(v) C-Tree work [3]

to specify a buffering solution at. For any two candidate solutions \yhen considering how to incorporate blockage constraints, we need
s1= (a1 (’U)-/Ch(’v)): ands; = (Cz(v):qz(v)): 51 is dominatedoy to partition it into the right phase in the design flow. Blockage avoid-
(inferior to) s2 if ¢i(v) > e2(v) andq: (v) < ¢2(v). A candidate so- ance is more tied with request on buffering solutions, i.e., it is hard to
lution setS(v) = {si1, s2,...} is a nondominating set if no solution know how to make a Steiner tree avoid blockages without knowing
in this set is dominated by any other solution in this set. During thehere buffers are needed. A simultaneous approach is not efficient
bottom-up process of van Ginneken's algorithm, the candidate solshile separate routing and buffer insertion approach as in [2] cannot
tions at leaf node evolve through the following operations. adequately plan for blockages. However, we can move the partitioning
. Grow (S(v),w): Propagate candidate sétv) from node line to the middle of these two approaches, i.e., we can generate a
d Steiner tree which is allowed to be adjusted during buffer insertion con-
struction according to dynamic requests for buffer blockage avoidance.
.) Our key idea is to explore just a handful of alternative buffer insertion
INote that the choice of which subtrees to group together can have an eff

on solution quality. Grouping the subtrees together in a nonoptimal way genlg)r‘i—{atlons for which the tree topology can be modified (as opposed to

ally has limited effect on timing quality, but may waste buffers that have to ¥ @pproach like bu_ffered P-Tree [11] WhiCh explores a much Iarggr
inserted for decoupling. Our implementation arbitrarily groups the child nodegpace). These locations correspond to moving a branch node outside

d . N
E common strategy to solve a sophisticated problem is divide-and-

v to node w to get S(w). If the wire betweenv an

494 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Source® atv andv’ can be further propagated to their parent negén the

Alternative Steiner point { next stage. The adjustment on the Steiner point is a part of the can-
didate solutions, thus, it only actually becomes part of the new tree if
the final solution is generated via this alternative path. Performing the
construction in this manner also guarantees that our approach will per-
form at least as well as the original van Ginneken algorithm. Since the
alternative Steiner points are searched along a constructed Steiner tree,
the solution space is quite limited compared with the simultaneous ap-
proach.

Y

Buffer blockage

C. RIATA+ Algorithm

(a) (b) In Section IlI-B, we introduced the basic RIATA heuristic in which
Fig. 2. For a Steiner point within a buffer blockage as in (a), the three bufferOnly one alternative point is searched for each Steiner node between
locations closest to can be found as in (b). itself and its parent node. When a Steiner node and its parent node
are both in the same blockage, no alternative point will be found. This
is illustrated in the example in Fig. 3(a) where five Steiner nodes are
a blockage which enables opportunities for decoupling and efficientthin the same blockage. If we apply the basic RIATA technique, we
driving of long paths. can find the alternative Steiner point for only Steiner nodeFig. 3(a)
Buffer blockages along paths that do not contain any Steiner nodé® alternative unblocked nodé is shown in Fig. 3(b)]. In order to
can be mitigated relatively easily by allowing them to take multibenallow unblocked alternative points for other Steiner nodes in this diffi-
route without increasing wirelength. This type of solution can beult case, we need to expand the search range.
achieved by applying the work in [2] to obtain a Steiner tree that hasWe illustrate this enhanced search scheme through the example in
L-shapes and Z-bends that minimize overlap with blockages but Ra. 4. Fig. 4(a) shows that there are two neighboring Steiner node
additional wirelength or tree topology adjustment. The difficult buffeandw; in the same buffer blockage. When van Ginneken'’s algorithm
blockage problems occur when a Steiner node lies on top of blockggeceeds to node;, we consider four alternative points on the four
which eliminates opportunities for decoupling noncritical paths argides of the blockage. They are the four crosses named as ¢, vi, -,
for driving long wires directly. Hence, our key idea is to consideandv, ; in Fig. 4(a). We define thexpanded Steiner node détv;)
generating alternative candidate solutions within van Ginneken's associated with; asV (v;) = {v:, v; 1, vi.t, 4 r. v, }2. Similar to
algorithm by trying an alternate location outside of blockage for thibe basic RIATA algorithm, the candidate solutions at children nqade

branching Steiner node. anduv, are propagated teverySteiner poinb € V(v;) and are merged
there.
B. Basic RIATA If the parent node/; of v; is a Steiner node in a blockage as in

Fig. 4, an expanded Steiner node%e&tj) is generated as in Fig. 4(b).

Given a Steiner tree, we extend van Ginneken'’s algorithm so th&hce the candidate solutions Wt v;) will be propagated from five
the tree topology is adaptively adjusted during the bottom-up candidgifferent points to five other different nodes¥i(v;), there will be 25
solution propagation process, i.e., buffer insertion is not restricted tg@mbinations. However, if one of the combinations causes a path de-
fixed topology anymore. During the bottom-up propagation processiéur, the resulting solutions are generally inferior to those without path
a Steiner point does not overlap a buffer blockage, our algorithm pigetours. For example, if we propagate candidate solutions from
ceeds in the same way as van Ginneken’s algorithm. The differenge,; ,, a large path detour will be incurred. This observation tells us
occurs when a Steiner point is within a buffer blockage, as depictedtifat certain combinations can be pruned out without significantly af-
Fig. 2(a). To compensate for the inability to have possible buffer ifiecting the solution quality. In order to specify the pruning scheme,
sertion candidates near the blocked Steiner point, we seek alternagjd¢edefine thenearest unblocked ancestof a node as the first un-
unblocked sites nearby to use instead. For the sake of Slmp|ICIty, thetﬁbcked node encountered when we trace from this node upstream to-
ternative point is searched only between noded its parentnode,. ward the source. For a child Steiner nadeat location(z;, y;) and
Within the bounding box between them, we search for an unblockgg parent node; at location(.;, y;), both of which are overlapped
point which is the closest to. Other searching schemes will be introwith blockages, with the nearest unblocked ancestor;ofis node
duced in the Section llI-C. In our example, Fig. 2(b) shows the result of 5t (e, y.), we call the propagation from; to v; as monotone if
searching for the unblocked point closest tov on the path between r; = median(z, z;,2.) andy; = median(y;, yj,yc) We do not
v and its pal’ent nOdep After we obtain this alternative Steiner point,simp|y Choose 's immediate parent node as reference p0|nt be-
we may generate an alternative tree topology to allow buffer insertiogguser,, may be in a blockage and its alternative point may invalidate
atthe adjusted branch node Before we propagate the candidate solughe monotone property defined @t itself. In the example in Fig. 4,
tions from the children nodes andv.., we search for the least blockedthe nearest unblocked ancestorgfis coincidentally the same as.
path to their parent nodesandv’ through the technique presented inyhen we propagate candidate solutions from each nodé(ot) to
[2]. By carefully choosing the cost, this technique can provide a pagiach node of(v;), any monotone propagation is allowed. In addi-
connecting a node; and another node; such that the path length is tion, we always allow propagation from to any node it (v,) to
the shortest and the total path length overlapping with buffer blockag&ssure there is at least one set of solutions propagated to every node
is minimized. We query this method as a subroutirastBlockedPath jn ﬁ*(vj)_ Any nonmonotone propagation from a node other thais
(vi, v;) to find the detailed path between children ned@ndv,, and disallowed. For the example in Fig. 4(c), candidate solutions aare
parent node andv’ followed by wire segmenting [1]. Next, we propa-not allowed to be propagated tg. Monotone propagations from
gate candidate solutions fromandv, through the least blocked pathsto v ; , and fromw; to v, ; are illustrated in Fig. 4(c). Note that the can-

to bothv andv’. Note that during this propagation process, more cagidate solutions from,, in Fig. 4 may come from an expanded Steiner
didate solutions may be generated by inserting buffers at segmenting

points along the pathand at nodev’. Then, the candidate solutions 2 v; is not a Steiner node or it is not in any blockages, thém,) = {v,}.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Source

Critical sink

(@) (b)

D
Critical sink

©

495

Fig. 3. Hard case that many Steiner nodes are within the same blockage. The original Steiner tree is shown in (a) with-§8@tkpsf Performing buffer
insertion on this fixed topology will improve the slack to 112 ps. If we run the basic RIATA heuristic, we can obtain solution as in (b) with slack offAd8& ps
apply the enhanceBHIATA+ heuristic, we can obtain solution in (c) with slack of 369 ps.

Source ®

X Alternative Steiner point

(b)

(a) Example of a Steiner tree with Steiner nodeandw»; in a blockage. (b) Finding alternative buffered Steiner nedeandw; , for »;. (c) Candidate

Fig. 4.
solutions fromw; ; andv; are propagated to alternative Steiner noge.

node sel’ (v,) as well and, similarly, any nonmonotone propagation
from a node i (v,) exceptv, to V(v;) is prohibited.

Searching alternative Steiner points on four boundaries of the
blockage guarantees that alternative points can always be found unless
the whole chip area is blocked. Furthermore, this search scheme
allows Steiner nodes to be spread out around the blockage if there are
multiple Steiner nodes in the same blockage as shown in Fig. 3(c).
If we consider only one alternative point for each Steiner node, the
alternative Steiner nodes may be crowded on the single side of the
blockage. We allow candidate solutions framto be propagated to
every node iri/ (v;) in Fig. 4 for the same reason.

To implement this heuristic, we need to efficiently find the closest
unblocked node st (v) for a nodev. Given a nodes and a set of
rectangleskR = {r(,r2,...7%} representing the buffer blockages, if
nodev is within a blockager € R, we need to find the unblocked
points which is the closest to on each boundary of. If there is no
overlap between any two buffer blockages, all we need to do is to locate
the rectangle that overlaps. If r is defined by bounding coordinates
(%10, Yi0s Tni» yni) @andwv is located at pointz., v,), the unblocked
points closest ta> on each boundary of are (zio, ¥u), (2o, Yri),
(xhi,yv) and(wy, y1o). If the set of rectangle® is stored as an in-
terval tree [7], the desired rectanglean be found i) (k) time in the
worst case. We lenblockedNodes$v, R) denote the procedure that
finds such an unblocked node set.

We call the enhanced heurisf’dATA+. The completRTATA +
algorithm is described in Fig. 5. The subroutine of propagating candi-

(©

Procedure: FindCandidates(v)

Input: Current node v to be processed
Output: Candidate solution set S(V (v)) at V(v)
Global: Steiner tree T'(V, E)
Buffer library B = {b1,bs,...}
Rectangles R = {r1,r2,...}

-y

. V(v) « {v}
2. If v is a Steiner node in a blockage
V (v) + V(v) U UnblockedN odes(v, R)
3. S(V(@))«< 0
4. Ifvisasink
S(V(v)) « S(V(v)) U{(c(v), q(v))}
Return S(V (v))
5. v; + left child node of v
S(V(w)) «+ FindCandidates(v;)
6. Si(V(v)) « Propagate(S(V(w)),f/(_v))
7. If v has only one child, Return S;(V (v))
8. v, + right child node of v
S(V (v,;)) + FindCandidates(v,)
9. ,(V(v)) + Propagate(S(V (u,)), 7 (v)
10. S(V(v)) + Merge(Si(V (v)), S(V (v)))
11. Return S(V (v))

Fig. 5. Core algorithm oRTATA+.

date solutions from one node set to another is shown in Fig. 6. We wsges, i.e., the condition in line 2 of Fig. 5 is always false; this algorithm
the symbok~ to represent a propagation. If there are no buffer blocks essentially the same as the van Ginneken’s algorithm. If we define

496 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Procedure: Propagate(S(V (v;)), V (v;)) c TQBLE [) "
Input: Candidate solutions at S(V (v;)) XPERIMENTAL RESULTS ONLARGE NETS
Node set V(v;) .) Net Algo || Slack(ps) | # buf | wire | CPU(sec)
Output: Candidate solution set S(V (v;)) at V(v;) n873 NoBuf -867 0 [4750 -
] VGNB 553 4 4750 0.68
0. 5(V(v;)) 0 - 21 pins VG 108 3 4750 0.16
1. For each node vix € V'(v:) RePath 110 3| 4750 0.18
2. For each node vj; € V(v;) 6 blks RIATA 339 3| 5034 0.23
3. If v; ;, ~ vj,; is monotone or v; p == v; RIATA+ 481 4 6054 6.47
4. P «+ LeastBlockedPath(v; x,vj1) nl89 NoBuf -1420 0 | 5843 -
DoS tin (P) VGNB 540 6 5843 3.17
5. ooegmenting 30 pins VG 264 5| 5843 0.38
6. Up = Vik RePath 344 5| 5843 0.36
7. While v, ¢ node next to v, in P 15 blks RIATA 441 5| 5845 0.85
S(vg) + AddBuf fer(Grow(S(vp),v RIATA+ 539 6 6029 55.27
v,,((i) v, ffer(Grow(S(ep), va)) 786 || NoBuf 848 0| 5318 -
- = VGNB 74 4 5318 2.27
8. S(V(v;)) ¢ S(V(v5)) US(vp) 33 pins e 193 > 5318 0.24
9. For each node vj; € V(v;) RePath -190 2| 5318 0.29
PruneSolutions(S(vj1)) 15 blks RIATA 6 3| 5319 0.62
10. Return S(V(’U)) RIATA+ 56 4 6555 24.44
T j 7870 || NoBuf 2835 0 [4764 -
VGNB 179 9 4764 5.61
Fig. 6. Subroutine of propagating candidate solutions from one node set 44 pins VG 105 41 4ved 1.09
RePath 105 4 4764 1.51
another node set.
16 blks RIATA 128 6 5030 4.73
RIATA+ 177 10 5069 142.32
= . . . i - 0 9407 -
V (vi) to |nclud§ onlyy; .an.d its neqrest unblockeq point betwee.ar?d . bigl {,\Ié%‘g 1(2)‘112 6 9407 2.45
its parenty;, this description applies for the basic RIATA heuristic in- 64 pins VG 711 719407 1.07
troduced in Section l1I-B. Actually, there could be many other ways o RePath 733 7| 9407 1.08
defining V' (v;) to achieve different solution quality and runtime trade. 7 blks Rﬁf%gﬁ 132? g lggg; 3}1‘22
fos. For example, we can include more alte_rnative Steiner poi_nts big2 NoBuf =560 012448 —
V(v;) or even allow nonmonotone propagations when the net is e VGNB .41 13 | 12448 8.44
tremely timing critical or its size is small. 80 pins VG -567 6 | 12448 1.28
RePath -567 6 | 12448 1.28
. 7 blks RIATA -171 7 | 12765 2.28
D. Complexity RIATA+ -61 13 | 13192 106.98
; ST : ; ; . big3 NoBuf -798 0 | 19669 -
Given a net withn msgrnon points ane_:h pins, a t_)uffer I|bra_r)B and ‘ & VGNB 1575 7 | 19669 22.95
k rectangles representing blockages, if the maximal candidate soluti gg pins VG 1101 6 1 19669 3.05
set size iy and the maximal expanded Steiner node set sizetisen RePath 1101 6 | 19669 3.86
i istic i .n-|Bl-h2 k). 21 blks RIATA 1382 8 | 20517 11.98
the complexity of our heuristic i©(g - n - | B| +m - k). The term RIATA L by 7 | 50016 71322

of m - k comes from the operations of searching unblocked alternati—
Steiner points. Obviously, = 2 for the RIATA heuristic and. = 5 for

the RTATA+ heuristic. We may assume that the capacitance value in o) ,)

each candidate solution can take only a polynomially bounded integer,® YG: This is van Ginneken's algorithm where blockage con-

thus, the complexity of our heuristic is pseudopolynomial. straints are obeyed by labeling nodes that overlap blockages as
infeasible. For every wire segment partially contained within a

blockage, an additional buffer insertion location is considered on
the point where the wire and blockage intersect.

We implemented all of the codes in C++ and performed the experi- * RePath: For a C-Tree topology, each path between two nodes
ments on a SUN Ultra-10 workstation with 2 GB of memory. Without ~ @ndw is rerouted if it overlaps with any buffer blockages. Note
loss of generality, we use only one buffer type in our buffer library and ~ thatv andw can only be either a source node, a sink node or
no negative sink polarity is considered. For all experiments, we use @ branch node. The paths are rerouted as in [2] such that their

C-Tree to generate the initial timing-driven Steiner tree, whenever one Path lengths are not changed while the total path length overlap-
is required. ping with blockage area is minimized. Then, after segmenting,
van Ginneken'’s algorithm is performed. This corresponds to the
proposed flow of first constructing a Steiner tree (C-Tree), then
making obvious, nonintrusive changes to the topology to avoid
We obtained seven big nets from industrial designs and generated blockages, followed by van Ginneken buffer insertion [3].

buffer blockages arbitrarily. The number of pins and buffer blockages « R|ATA: This is the basic version of our algorithm introduced in
for each net are listed in columns 2 and 3 in Table |, respectively. In Section 1lI-B that adaptively adjusts VG to consider only one
experiments, we compared the tree performances of the following ap- more alternate point for each Steiner node. Note that the candidate

IV. EXPERIMENTAL RESULTS

A. Experiments on Large Nets

proaches. solutions generated by RIATA are a superset of VG, and, thus,
» NoBuf: This is C-Tree without any buffer insertion, which gives RIATA is guaranteed to perform no worse than VG.
a baseline for comparison. e« RIATA+: This is the RIATA+ algorithm introduced in

* VGNB: This is van Ginneken'’s algorithm on C-Tree ignoring Section 1lI-C. RIATA+ candidates are generally a superset
buffer blockages completely. This serves as a type of crude upper of RIATA candidates, though not strictly so due to potential
bound on how well the other approaches are handling blockages. segmenting differences on alternative paths.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003 497

One can observe the following from the maximum slack results in TABLE I

column 5 of Table I. First, buffer insertion certainly is a worthwhile EXPERIMENTS ONSMALL - AND MIDDLE-SIZED CIRCUITS
oper{:\tlon, as all bu_ffer insertion mgthods significantly improve on the Net Algo || Slack(ps) | # buf | wire | CPU(sec)
solution NoBuf, which has no buffering. Second, RIATA &\ TA + 1071 NoBuf 183 0 5868 -
usually yield significantly better slack results than and VG and RePath) VG 393 1| 5868 0.04
Finally, the solutions fronRIATA -+ are always superior to othersand ~ © Pin® || RePath 393 1| 3888 0.05
Y: Atal yS superior r RIATA 452 3| 5919 0.11
are almost as good as VGNB in which blockages are ignored entirely 19 buf || RIATA+ 559 5 | 6767 0.77
Actually, RTATA + outperforms VGNB for netig3, because it finds sites Vggg gzg 2 57’,8,351’ 1‘1"(15'1’
a better topology than C-Tree, even tholINTA+ obeys blockages 0S5 NoBuf 53 0 | 6278 —
while VGNB does not.) VG 208 1 6278 0.04
In addition to timing performance, we show major resource expense 8 pins || ReFath o0 5| s PO
(number of buffers, wirelength, and CPU time in seconds) in the right- 13 buf || RIATA+ 454 7| 9279 0.87
most three columns of Table I. We observe that RIATA uses roughly the sites Vggg gég ’; lg%?{ g(l)’;
same number of b_uffers as VG or RePath while the number gf b_u_ffer: —13 NoBuf 158 o1 5527 -
used byRIATA+ is close to VGNB. Also, RIATA does not signifi- VG 188 0| 5547 0.04
cantly increase the wirelength of the low wirelength VG solutions while 9 pins fgii?l’fx 23515 i ggg; 8~(1’(5)
the wirelength increase frolIATA + is greater. There is a moderate 33 py¢ || RIATA+ 512 6 | 7204 0.84
increase in CPU time of RIATA versus VG, but they are virtually in the sites VGNB 513 6 | 5547 0.16
same order. Not unexpectedRIATA + consumes significantly larger _— NT;;I; 2?{2 g 1‘;3;’?{ 0.79
. . . . n u -
CPU time, since it explores a much larger solution space. Therefore VG 694 1| 1487 0.05
RIATA and RIATA+ provide different solution quality and runtime 9 pins RePath 694 1| 1487 0.05
; ; ATA L i RIATA 694 1| 1487 0.06
tradeoff. In the Sectlon V, we will show that ev®IATA+ is much 15 buf || RIATA+ 854 4 1524 0.24
faster than the simultaneous approach. sites VGNB 941 6 | 1487 0.22
RMP 738 3 | 2401 19.60
i pnt3 NoBuf 687 0 5291 -
B. Comparisons With RMP Ve 287 s | soe1 0.06
Besides VG and RePath, our next set of experiments compar 10 pins T}i{elljﬁfz gg; 1; ggg(l) gg;’
RIATA/ _RIA_TA—i— with the RMP algorithm [6]: since its problem 19 buf || RIATAL 1028 s | son1 1.00
formulation is almost same as ours. We obtained the executable ¢ sites VGNB 1031 5 | 5201 0.12
RMP from the authors of [6]. As RMP is designed for relatively small RMP 1011 6 | 15093 11.72
: . . ; m1s9 NoBuf 369 0 | 4222 -
nets, we perform comparisons on sets of industrial nets with fewe VG 493 1| 4222 0.05
sinks than those considered in the previous experiments. In additior 10 pins RePath 661 2 | 4222 0.09
; ; DR ot ; RIATA 760 4| 4648 0.12
we run RMP in quick mode which is its faster heuristic version. Wg 17 buf || RIATA+ 821 6 | szo0s1 1.32
randomly generate blockages and then construct the correspondit sites VGNB 837 6 4222 0.23
extended Hanan grid for each test case. In order to compare to RMP - NRIE\;IP; g;i g ggg; 283.07
: : : : n oBu -
fgrmulatlon, we |ntent.|0nally marked some legal capdldate buffer VG 696 1| 2233 0.08
sites on the Hanan grid as illegal to reduce the solution space sinc 11 pins RePath 713 2 | 2233 0.10
otherwise RMP cannot complete in a reasonable amount of time RIATA 780 3| 3018 0.10
; . 12 buf || RIATA+ 811 5 | 3033 2.11
Comparlsons for RIATA apd RMI? .both use the same set of ppss!blt sites VGNB 863 6 | 2233 0.48
buffer locations. Comparisons giving slack and resource utilization RMP 843 4| 3379 109.35
are shown in Table II. n702 N°3‘g ‘“fgg ‘1’ ggg; 0.07
RIATA+ outperforms RMP in six of the nine testcases on slack re- 13 pins RePath -8 1 3567 0.09
sults. On net n730, the slack froRTATA+ is greater than that from 17 but RIT%‘\:A i?g g gigz g-;g

; u + .
RMP t_)y 116 ps. FurthermorIATA+ shows superior advantage on sites VGNB 200 s | 3567 0.42
CPU time versus RMP. The best case for RMP is on net n313 where RMP 202 3 | 4294 2645.26
consumes about the same CPU timeRdaTA+. When the number n866 NoBuf -17 0] 6840 -
f pins/buffer sites increase, the RMP’s CPU time quickly increases tc ve 353 2| o840 9.10
orpins ' quickly 12 pins || RePath 356 2 | 6840 0.11
magnitude greater than RIATRIATA 4. Clearly, RMP cannot be ap- RIATA 469 3| 7730 0.14
plied to thousands of nets in a physical synthesis type of optimization 2635:: Rlegﬁig g‘l’; '8’ gggg 3'3?
In addition, RMP usually uses more overall wirelength as well. RMP 523 7 | 10587 1083.04
V. CONCLUSION
REFERENCES

We propose RIATA/RIATA+, an adaptive tree adjustment tech-
nigue that is integrated directly into van Ginneken’s classic buffer in- s i))
sertion algorithm to_ ha_ndle buffer _blockage c_onstrain_t_s. Ou_r experi-[l] ﬁéﬂ;ﬁr']p;:;if‘gé‘,ﬁg&gég e\s{}/g'rﬁiﬁf’on;eaqitgnngcf%:ggg;‘?‘ﬁf gggﬁgg‘;er'
ments show that this simple technique can give significant improve-[] c. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay, and S. S. Sap-
ments over van Ginneken’s original algorithm at a reasonable CPU atnekar, “A steiner tree construction for buffers, blockages, and bays,”
cost. Further, it is much faster and nearly as effective as the RMP ap- |EEE Trans. Computer-Aided Desigrol. 20, pp. 556-562, Apr. 2001.

; ; [3] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B.
proach, which searches a much larger solution space. Liu, S. T. Quay, S. S. Sapatnekar, and A. J. Sullivan, “Buffered steiner

trees for difficult instances [EEE Trans. Computer-Aided Desigvol.

ACKNOWLEDGMENT 21, pp. 3-14, Jan. 2002.
. . [4] J. Cong. (1997) Challenges and opportunities for design innovations in
The authors would like to thank X. Yuan and J. Cong for providing nanometer technologies. SRC Design Sciences Concept Paper. [Online].

the RMP code. Available: http://www.src.org

498

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

[5] J.Cong, T.Kong, and D. Z. Pan, “Buffer block planning for interconnect- Global and Local Congestion Optimization
drivgn floorplanning,” inProc. IEEE/ACM Int. Conf. Computer-Aided in Technology Mapping
Design 1999, pp. 358—-363.

[6] J. Cong and X. Yuan, “Routing tree construction under fixed buffer

locations,” in Proc. ACM/IEEE Design Automation Con2000, pp. Davide Pandini, Lawrence T. Pileggi, and Andrzej J. Strojwas

379-384.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and ApplicationdNew York: Abstract—n this era of deep submicrometer technologies, interconnects
Springer-Verlag, 1997. are becoming increasingly important as their effects strongly impact the in-

[8] W.C. Elmore, “The transient response of damped linear networks witgrated circuit (1C) functionality and performance. Moreover, logic block
particular regard to wideband amplifiersl” Appl. Phys.vol. 19, no. 1 size is no longer determined exclusively by total cell area and is often lim-
, pp. 55-63, 1948. ited by wiring area. However, synthesis optimization objectives are focused
[9] A.Jagannathan, S.-W. Hur, and J. Lillis, “A fast algorithm for contexton minimizing the number and size of library cells. Methodologies that in-
aware buffer insertion,” ifProc. ACM/IEEE Design Automation Conf. corporate congestion within the logic synthesis objective function have been
2000, pp. 368-373. proposed in the past. Nevertheless, we will demonstrate that predicting the
[10] M. Lai and D. F. Wong, “Maze routing with buffer insertion andtrue congestion prior to layout is not possible, and the effectiveness of any
wiresizing,” in Proc. ACM/IEEE Design Automation Con2000, pp. congestion minimization approach can only be evaluated after routing is
374-378. completed within the fixed die size. In this paper, we propose a practical,
[11] J.Lillis, C. K. Cheng, and T. Y. Lin, “Simultaneous routing and buffer in-complete methodology which first performs congestion-aware technology
sertion for high performance interconnect, Broc. Great Lakes Symp. mapping using a global weighting factor for the technology-dependent syn-
VLS|, 1996, pp. 148-153. thesis cost function and then applies incremental localized unmapping and
X. Tang, R. Tian, H. Xiang, and D. F. Wong, “A new algorithm forremapping on layout congested areas. This complete approach addresses
routing tree construction with buffer insertion and wire sizing under oldhe problem that one global factor is not suited for all layout regions of
stacle constraints,” iRProc. IEEE/ACM Int. Conf. Computer-Aided De- the design, which might have very different routing demands. Most impor-
sign, 2001, pp. 49-56. tantly, through the application of this methodology to industrial examples,
[13] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree netve will show that any attempt at a purely top—down single-pass conges-
works for minimal elmore delay,” ifProc. IEEE Int. Symp. Circuits tion-aware technology mapping is merely wishful thinking.
Syst, 1990, pp. 865-868.
[14] H. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations,” fmoc.
ACM/IEEE Design Automation ConfLl999, pp. 96-99.

[12]

Index Terms—Congestion estimation, logic synthesis, physical design,
placement, routability, routing, technology mapping, wiring congestion.

. INTRODUCTION

In deep submicrometer (DSM) technologies, interconnects play a
crucial role in the overall performance of very large scale integration
(VLSI) systems [1]. For technologies of 0.26n and below, inter-
connect capacitance becomes dominant with respect to gate capaci-
tance, thus rapidly increasing the interconnect induced delay (as a per-
centage of the overall path delay). Therefore, the impact of intercon-
nects on performances has to be carefully evaluated in order to sat-
isfy the design constraints during all phases of the traditional appli-
cation specified integrated circuit (ASIC) top-down design flow. The
interconnect models used in timing-driven layout tools are essentially
based on fan-out loading and predefined net configurations. However, a
fan-out-based model for delay estimation can be highly inaccurate for
modeling the actual interconnect delay prior to layout, since, by not
considering the actual topology of the wires, it cannot accurately pre-
dict the distributedRC effects [3]-[5]. As a consequence, many itera-
tions between logic synthesis and physical design are usually necessary
to achieve the timing closure. Unfortunately, this iterative process does
not have any guarantee of convergence, and significant changes to the
high-level description of the circuit may be necessary, thus, introducing
a critical bottleneck for tight time-to-market targets. While the prob-
lems of timing convergence due to these inaccuracies are well studied,
of equal importance is the impact of wiring on defining the block or
chip size, in particular for logic synthesis, which traditionally has at-
tempted to minimize cell area in order to minimize the area of a logic
block orIC. Traditionally, optimization focused on the total cell area for

Manuscript received June 1, 2002; revised September 20, 2002. This work
was supported by the Central Research and Development of STMicroelec-
tronics, Inc. This paper was recommended by Guest Editor C. J. Alpert.

D. Pandini is with the Central Research and Development, STMicroelec-
tronics, Agrate Brianza, 20041, Italy (e-mail: davide.pandini@st.com).

L. T. Pileggi and A. J. Strojwas are with the Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: pileggi@ece.cmu.edu; ajs@ece.cmu.edu).

Digital Object Identifier 10.1109/TCAD.2003.809646

0278-0070/03$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

