
492 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Short Papers___

Buffer Insertion With Adaptive Blockage Avoidance

Jiang Hu, Charles J. Alpert, Stephen T. Quay, and Gopal Gandham

Abstract—Buffer insertion is a fundamental technology for very large
scale integration interconnect optimization. This work presents the
repeater insertion with adaptive tree adjustment (RIATA) heuristic that
directly extends van Ginneken’s classic algorithm to handle blockages in
the layout. Given a Steiner tree containing a Steiner point that overlaps
a blockage, a local adjustment is made to the tree topology that enables
additional buffer insertion candidates to be considered. This adjustment
adapts to the demand on buffer insertion and is incurred only when it
facilitates the maximal slack solution. RIATA can be combined with any
performance-driven Steiner tree algorithm and permits various solution
search schemes to achieve different solution quality and runtime tradeoffs.
Experiments on several large nets confirms that high-quality solutions
can be obtained through this technique with greater efficiency than
simultaneous approaches.

Index Terms—Buffer insertion, deep submicrometer, interconnect,
layout, physical design, very large scale integration.

I. INTRODUCTION

Buffer insertion is now widely recognized as a key technology for
improving very large scale integration interconnect performance. Cong
[4] projects that as many as 800 000 buffers will be required for designs
in 50-nm technologies. As design complexity increases, designers are
relying on an increasing number of IP cores, large memory arrays, and
hierarchical components, i.e., designs are becoming “chunkier.” For
a buffer insertion technique to be effective, it must be fully aware of
its surrounding blockage constraints while also being efficient enough
to quickly process thousands of nets. In the buffer insertion literature,
van Ginneken’s dynamic programming-based algorithm [13] has es-
tablished itself as a classic in the field.

Prior to buffer insertion, several large area chunks may already be
occupied by macro or IP blocks for which wires can be routed over the
blocks, but buffers cannot be inserted inside the blocks. We call these
regions “buffer blockages.” For example, Fig. 1(a) shows a Steiner tree
with three-pins and a buffer blockage. Let the required arrival times
for the sinks berat(v1) = 200 andrat(v2) = 100. If the blockage
is ignored, one can obtain a good solution as shown in Fig. 1(b). Here,
the buffer acts to decouple the load of the branchv1 from the more
critical sink v2. Of course, in practice, one cannot ignore the buffer
blockage and a solution other than that in Fig. 1(b) must be sought. If
one restricts the solution space to the existing Steiner topology, the two
best solutions are shown in Fig. 1(c) and (d), but neither solution meets
the required timing constraints.

The authors of [9], [10], and [14] proposed optimal algorithms on
finding a minimum delay bufferedpathwith buffer blockages. In [6],
Cong and Yuan proposed a dynamic programming algorithm, called
recursively merging and pruning (RMP), to handle the multisink net

Manuscript received May 31, 2002; revised September 29, 2002. This paper
was recommended by Guest Editor S. S. Sapatnekar.

J. Hu is with the Department of Electrical Engineering, Texas A&M Univer-
sity, College Station, TX 77843 USA (e-mail: jianghu@ee.tamu.edu).

C. J. Alpert and S. T. Quay are with IBM Corporation, Austin, TX 78758
USA.

G. Gandham is with IBM Corporation, Hopewell Junction, NY 12533 USA.
Digital Object Identifier 10.1109/TCAD.2003.809647

Fig. 1. Steiner tree and buffer solutions on a three-pin net with one buffer
blockage.

buffer insertion with location restrictions. RMP is designed for the
buffer block methodology [5] for which the number of legal buffer lo-
cations is quite limited. It works on a grid graph that is constructed
by adding horizontal and vertical lines through each potential buffer
locations to the Hanan grid. It not only explores almost every node on
the grid in tree construction but also considers many sink combinations
in subsolutions. Consequently, RMP tends to be slow when either the
number of net pins or legal buffer locations is large. Nevertheless, RMP
generally yields near optimal solutions in term of timing performance.
More recently, Tanget al.suggested a graph-based algorithm [12] on a
similar problem. While more efficient than RMP, it can optimize only
the maximum sink delay rather than the minimum slack.

Difficult buffering problems occur not just with large nets but also
when sink polarity constraints are present. Alpertet al.developed the
“buffer-aware” C-Tree heuristic [3] to be used as a precursor to van
Ginneken’s algorithm. However, the method is not “blockage-aware.”
To solve this one could first run C-Tree, then invoke the algorithm of
[2], which performs local rerouting to avoid the blockages without
adding too much wiring. Then, this modified tree is passed to van
Ginneken’s buffer insertion algorithm. For example, this approach
would obtain the buffered solution in Fig. 1(e). However, a carefully
constructed timing-driven topology can be destroyed by these local
topology changes, making the final slack significantly worse than not
running local rerouting at all.

Hence, despite all the work in this field, there is still no fast and
effective solution for multisink nets. We seek an algorithm that can
find the solution in Fig. 1(f) for our example. This optimal solution for
maximizing the minimum slack may be obtained by simply sliding the
buffer insertion solution in Fig. 1(b) to its closest legal location. While
an approach like this works for this example, it fails for a larger-sized

0278-0070/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003 493

tree with multiple branching nodes because the proper buffer insertion
solution for one branching node relies on the buffer solution for another
branching node. Therefore, moving each buffer out of blockage indi-
vidually can ruin the integrity of the buffer insertion solution. More-
over, if a buffer is moved too far away from its original location, the
solution quality may degrade beyond repair.

Consequently, we propose to handle blockages during buffer inser-
tion directly within van Ginneken’s algorithm. Our technique adjusts
a given tree topology according to the demand on buffer insertion, and
such adjustments only occur when it facilitates the maximal slack solu-
tion. This technique can be used with any performance-driven Steiner
tree algorithm. Experimental results show that we can obtain greater
efficiency than methods that use the entire Hanan grid.

The remainder of the paper is organized as follows. Section II for-
mulates the problem we wish to solve and reviews van Ginneken’s al-
gorithm. The algorithm is described in Section III. We show the exper-
imental results in Section IV and conclude this paper in Section V.

II. PRELIMINARIES

For the Steiner tree construction, letVinternal represent the set of
nodes in the tree other than the source and sinks. The problem we ad-
dress is formulated as follows.

Problem Formulation: Given a netN = fv0; v1; v2; . . . ; vng
with source v0, sinks v1; . . . ; vn, load capacitancesc(vi), and
required arrival timeq(vi) for each sinkvi 2 N , a set of rectangles
R = fr1; r2; . . . rkg representing buffer blockages, and a buffer
library B = fb1; b2; . . . bmg, find a buffered Steiner treeT (V;E)
whereV = N [Vinternal andE spans every node inV such that the
required arrival time at the source is maximized.

The formulation is similar to the formulation for RMP [6] except that
a set of legal buffer locations is given in RMP instead of a set of buffer
blockages. To transform our formulation to that proposed in [6], we can
extend the borders of blockages over a Hanan grid and label each node
on the new grid graph as either a legal or infeasible buffer location.

We adopt the Elmore delay model [8] for interconnect and anRC
switch model for gate delays. We assume that the given routing tree
T (V;E) is a binary tree, i.e., every internal node has no more than two
children and that every sink has degree one. Any routing tree can be
easily transformed to satisfy both conditions by inserting zero-length
pseudo edges.1

Since we propose to extend the van Ginneken’s algorithm to directly
handle buffer blockages, we first overview the algorithm to form a
basis for the remainder of the discussion. Van Ginneken’s algorithm
proceeds bottom-up from the leaf nodes along a given tree topology
toward the source node. A set of candidate solutions is computed for
each node during this process. A candidate solution at a nodev is char-
acterized by the load capacitancec(v) seen downstreamv and the re-

quired arrival timeq(v) at nodev. We use a pairs = c(v); q(v)

to specify a buffering solution atv. For any two candidate solutions
s1 = c1(v); q1(v) , ands2 = c2(v); q2(v) , s1 is dominatedby

(inferior to) s2 if c1(v) � c2(v) andq1(v) � q2(v). A candidate so-
lution setS(v) = fs1; s2; . . .g is a nondominating set if no solution
in this set is dominated by any other solution in this set. During the
bottom-up process of van Ginneken’s algorithm, the candidate solu-
tions at leaf node evolve through the following operations.

• Grow S(v); w : Propagate candidate setS(v) from node

v to node w to get S(w). If the wire betweenv and

1Note that the choice of which subtrees to group together can have an effect
on solution quality. Grouping the subtrees together in a nonoptimal way gener-
ally has limited effect on timing quality, but may waste buffers that have to be
inserted for decoupling. Our implementation arbitrarily groups the child nodes.

w has a resistance ofR and capacitanceC, we can get
ci(w) = ci(v) + C andqi(w) = qi(v)�R C=2 + ci(v) for

each(ci(v); qi(v)) 2 S(v), and obtainS(w) from the solution

pairs ci(w); qi(w) 8 i.

• AddBuffer S(v) : Insert buffer atv and add the new candidate

into S(v). If a bufferb has an input capacitancecb, output resis-
tancerb and intrinsic delaytb, we can obtainci;buf(v) = cb and

qi;buf(v) = qi(v)�rbci(v)�tb for each ci(v); qi(v) 2 S(v)

and add the pair ci;buf(v); qi;buf(v) 8 i with the maximum

qi;buf into S(v).

• Merge Sl(v); Sr(v) : Merge solution set from left child
of v to the solution set from the right child ofv to obtain a
merged solution setS(v). For a solution cj;left(v); qj;left(v)

from the left child and a solution ck;right(v); qk;right(v)

from the right child, the merged solutionci(v); qi(v) is

obtained through lettingci(v) = cj;left(v) + ck;right(v) and

qi(v) = min qj;left(v); qk;right(v) .

• PruneSolutions S(v) : Remove any solutions1 2 S(v) that is

dominated by any other solutions2 2 S(v).

After a set of candidate solutions are propagated to the source, the
solution with the maximum required arrival time is selected for the final
solution. For a fixed routing tree, this algorithm can find the optimal
solution inO(n2) time if there aren pins in this net. If we do wire
segmenting,n should be the number of candidate insertion points.

III. REPEATER INSERTION WITH ADAPTIVE TREE

ADJUSTMENT(RIATA) A LGORITHMS

A. Strategy

A common strategy to solve a sophisticated problem is divide-and-
conquer, i.e., partitioning a complex problem into a set of subproblems
in manageable scales. Such partitioning can be performed on either
physical or design flow aspects. For example, a large net can be phys-
ically clustered into smaller nets as in C-Tree. Such partitioning not
only speeds up the problem-solving process, but also isolates subprob-
lems according to their natures so that scattered targets can be avoided
and the optimization can be well focused. Separating the Steiner tree
construction from buffer insertion procedure is an example of parti-
tioning the design flow. An initial Steiner tree construction can limit
the buffer solution search along an anticipated good direction. A direc-
tional search is obviously more efficient than the simultaneous routing
and buffer insertion which is an implicitly brute-force search, even
though the search may intelligently prune some unnecessary candidate
solutions. This design flow partitioning is shown to be effective in the
C-Tree work [3].

When considering how to incorporate blockage constraints, we need
to partition it into the right phase in the design flow. Blockage avoid-
ance is more tied with request on buffering solutions, i.e., it is hard to
know how to make a Steiner tree avoid blockages without knowing
where buffers are needed. A simultaneous approach is not efficient
while separate routing and buffer insertion approach as in [2] cannot
adequately plan for blockages. However, we can move the partitioning
line to the middle of these two approaches, i.e., we can generate a
Steiner tree which is allowed to be adjusted during buffer insertion con-
struction according to dynamic requests for buffer blockage avoidance.
Our key idea is to explore just a handful of alternative buffer insertion
locations for which the tree topology can be modified (as opposed to
an approach like buffered P-Tree [11] which explores a much larger
space). These locations correspond to moving a branch node outside

494 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

(a) (b)

Fig. 2. For a Steiner pointv within a buffer blockage as in (a), the three buffer
locations closest tov can be found as in (b).

a blockage which enables opportunities for decoupling and efficient
driving of long paths.

Buffer blockages along paths that do not contain any Steiner nodes
can be mitigated relatively easily by allowing them to take multibend
route without increasing wirelength. This type of solution can be
achieved by applying the work in [2] to obtain a Steiner tree that has
L-shapes and Z-bends that minimize overlap with blockages but no
additional wirelength or tree topology adjustment. The difficult buffer
blockage problems occur when a Steiner node lies on top of blockage
which eliminates opportunities for decoupling noncritical paths and
for driving long wires directly. Hence, our key idea is to consider
generating alternative candidate solutions within van Ginneken’s
algorithm by trying an alternate location outside of blockage for the
branching Steiner node.

B. Basic RIATA

Given a Steiner tree, we extend van Ginneken’s algorithm so that
the tree topology is adaptively adjusted during the bottom-up candidate
solution propagation process, i.e., buffer insertion is not restricted to a
fixed topology anymore. During the bottom-up propagation process, if
a Steiner point does not overlap a buffer blockage, our algorithm pro-
ceeds in the same way as van Ginneken’s algorithm. The difference
occurs when a Steiner point is within a buffer blockage, as depicted in
Fig. 2(a). To compensate for the inability to have possible buffer in-
sertion candidates near the blocked Steiner point, we seek alternative
unblocked sites nearby to use instead. For the sake of simplicity, the al-
ternative point is searched only between nodev and its parent nodevp.
Within the bounding box between them, we search for an unblocked
point which is the closest tov. Other searching schemes will be intro-
duced in the Section III-C. In our example, Fig. 2(b) shows the result of
searching for the unblocked pointv0 closest tov on the path between
v and its parent nodevp. After we obtain this alternative Steiner point,
we may generate an alternative tree topology to allow buffer insertions
at the adjusted branch nodev0. Before we propagate the candidate solu-
tions from the children nodesvl andvr , we search for the least blocked
path to their parent nodesv andv0 through the technique presented in
[2]. By carefully choosing the cost, this technique can provide a path
connecting a nodevi and another nodevj such that the path length is
the shortest and the total path length overlapping with buffer blockages
is minimized. We query this method as a subroutineLeastBlockedPath
(vi; vj) to find the detailed path between children nodevl andvr, and
parent nodev andv0 followed by wire segmenting [1]. Next, we propa-
gate candidate solutions fromvl andvr through the least blocked paths
to bothv andv0. Note that during this propagation process, more can-
didate solutions may be generated by inserting buffers at segmenting
points along the pathsand at nodev0. Then, the candidate solutions

at v andv0 can be further propagated to their parent nodevp in the
next stage. The adjustment on the Steiner point is a part of the can-
didate solutions, thus, it only actually becomes part of the new tree if
the final solution is generated via this alternative path. Performing the
construction in this manner also guarantees that our approach will per-
form at least as well as the original van Ginneken algorithm. Since the
alternative Steiner points are searched along a constructed Steiner tree,
the solution space is quite limited compared with the simultaneous ap-
proach.

C. RIATA+ Algorithm

In Section III-B, we introduced the basic RIATA heuristic in which
only one alternative point is searched for each Steiner node between
itself and its parent node. When a Steiner node and its parent node
are both in the same blockage, no alternative point will be found. This
is illustrated in the example in Fig. 3(a) where five Steiner nodes are
within the same blockage. If we apply the basic RIATA technique, we
can find the alternative Steiner point for only Steiner nodev in Fig. 3(a)
[the alternative unblocked nodev0 is shown in Fig. 3(b)]. In order to
allow unblocked alternative points for other Steiner nodes in this diffi-
cult case, we need to expand the search range.

We illustrate this enhanced search scheme through the example in
Fig. 4. Fig. 4(a) shows that there are two neighboring Steiner nodevi

andvj in the same buffer blockage. When van Ginneken’s algorithm
proceeds to nodevi, we consider four alternative points on the four
sides of the blockage. They are the four crosses named asvi;l, vi;t, vi;r,
andvi;b in Fig. 4(a). We define theexpanded Steiner node set~V (vi)

associated withvi as ~V (vi) = fvi; vi;l; vi;t; vi;r; vi;bg2 . Similar to
the basic RIATA algorithm, the candidate solutions at children nodeva

andvb are propagated toeverySteiner pointv 2 ~V (vi) and are merged
there.

If the parent nodevj of vi is a Steiner node in a blockage as in
Fig. 4, an expanded Steiner node set~V (vj) is generated as in Fig. 4(b).
Since the candidate solutions at~V (vi) will be propagated from five
different points to five other different nodes in~V (vj), there will be 25
combinations. However, if one of the combinations causes a path de-
tour, the resulting solutions are generally inferior to those without path
detours. For example, if we propagate candidate solutions fromvi;t

to vj;b, a large path detour will be incurred. This observation tells us
that certain combinations can be pruned out without significantly af-
fecting the solution quality. In order to specify the pruning scheme,
we define thenearest unblocked ancestorof a node as the first un-
blocked node encountered when we trace from this node upstream to-
ward the source. For a child Steiner nodevi at location(xi; yi) and
its parent nodevj at location(xj ; yj), both of which are overlapped
with blockages, with the nearest unblocked ancestor ofvj as node
vc at (xc; yc), we call the propagation fromvi to vj as monotone if
xj = median(xi; xj ; xc) andyj = median(yi; yj ; yc). We do not
simply choosevj ’s immediate parent nodevp as reference point, be-
causevp may be in a blockage and its alternative point may invalidate
the monotone property defined atvp itself. In the example in Fig. 4,
the nearest unblocked ancestor ofvj is coincidentally the same asvp.
When we propagate candidate solutions from each node of~V (vi) to
each node of~V (vj), any monotone propagation is allowed. In addi-
tion, we always allow propagation fromvi to any node in~V (vj) to
ensure there is at least one set of solutions propagated to every node
in ~V (vj). Any nonmonotone propagation from a node other thanvi is
disallowed. For the example in Fig. 4(c), candidate solutions atvi;t are
not allowed to be propagated tovj . Monotone propagations fromvi;t
to vj;t and fromvi to vj;t are illustrated in Fig. 4(c). Note that the can-
didate solutions fromva in Fig. 4 may come from an expanded Steiner

2If v is not a Steiner node or it is not in any blockages, then~V (v) = fv g.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003 495

(a) (b) (c)

Fig. 3. Hard case that many Steiner nodes are within the same blockage. The original Steiner tree is shown in (a) with slack of�101 ps. Performing buffer
insertion on this fixed topology will improve the slack to 112 ps. If we run the basic RIATA heuristic, we can obtain solution as in (b) with slack of 148 ps. If we
apply the enhancedRIATA+ heuristic, we can obtain solution in (c) with slack of 369 ps.

(a) (b) (c)

Fig. 4. (a) Example of a Steiner tree with Steiner nodesv andv in a blockage. (b) Finding alternative buffered Steiner nodev andv for v . (c) Candidate
solutions fromv andv are propagated to alternative Steiner nodev .

node set~V (va) as well and, similarly, any nonmonotone propagation
from a node in~V (va) exceptva to ~V (vi) is prohibited.

Searching alternative Steiner points on four boundaries of the
blockage guarantees that alternative points can always be found unless
the whole chip area is blocked. Furthermore, this search scheme
allows Steiner nodes to be spread out around the blockage if there are
multiple Steiner nodes in the same blockage as shown in Fig. 3(c).
If we consider only one alternative point for each Steiner node, the
alternative Steiner nodes may be crowded on the single side of the
blockage. We allow candidate solutions fromvi to be propagated to
every node in~V (vj) in Fig. 4 for the same reason.

To implement this heuristic, we need to efficiently find the closest
unblocked node set~V (v) for a nodev. Given a nodev and a set of
rectanglesR = fr1; r2; . . . rkg representing the buffer blockages, if
nodev is within a blockager 2 R, we need to find the unblocked
points which is the closest tov on each boundary ofr. If there is no
overlap between any two buffer blockages, all we need to do is to locate
the rectangler that overlapsv. If r is defined by bounding coordinates
(xlo; ylo; xhi; yhi) andv is located at point(xv ; yv), the unblocked
points closest tov on each boundary ofr are (xlo; yv), (xv; yhi),
(xhi; yv) and(xv; ylo). If the set of rectanglesR is stored as an in-
terval tree [7], the desired rectangler can be found inO(k) time in the
worst case. We letUnblockedNodes(v;R) denote the procedure that
finds such an unblocked node set.

We call the enhanced heuristicRIATA+. The completeRIATA+
algorithm is described in Fig. 5. The subroutine of propagating candi-
date solutions from one node set to another is shown in Fig. 6. We use
the symbol to represent a propagation. If there are no buffer block-

Fig. 5. Core algorithm ofRIATA+.

ages, i.e., the condition in line 2 of Fig. 5 is always false; this algorithm
is essentially the same as the van Ginneken’s algorithm. If we define

496 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Fig. 6. Subroutine of propagating candidate solutions from one node set to
another node set.

~V (vi) to include onlyvi and its nearest unblocked point betweenvi and
its parentvj , this description applies for the basic RIATA heuristic in-
troduced in Section III-B. Actually, there could be many other ways on
defining ~V (vi) to achieve different solution quality and runtime trade-
offs. For example, we can include more alternative Steiner points in
~V (vi) or even allow nonmonotone propagations when the net is ex-
tremely timing critical or its size is small.

D. Complexity

Given a net withn insertion points andm pins, a buffer libraryB and
k rectangles representing blockages, if the maximal candidate solution
set size isg and the maximal expanded Steiner node set size ish, then
the complexity of our heuristic isO(g � n � jBj � h2 +m � k). The term
of m � k comes from the operations of searching unblocked alternative
Steiner points. Obviously,h = 2 for the RIATA heuristic andh = 5 for
theRIATA+ heuristic. We may assume that the capacitance value in
each candidate solution can take only a polynomially bounded integer,
thus, the complexity of our heuristic is pseudopolynomial.

IV. EXPERIMENTAL RESULTS

We implemented all of the codes in C++ and performed the experi-
ments on a SUN Ultra-10 workstation with 2 GB of memory. Without
loss of generality, we use only one buffer type in our buffer library and
no negative sink polarity is considered. For all experiments, we use
C-Tree to generate the initial timing-driven Steiner tree, whenever one
is required.

A. Experiments on Large Nets

We obtained seven big nets from industrial designs and generated
buffer blockages arbitrarily. The number of pins and buffer blockages
for each net are listed in columns 2 and 3 in Table I, respectively. In
experiments, we compared the tree performances of the following ap-
proaches.

• NoBuf: This is C-Tree without any buffer insertion, which gives
a baseline for comparison.

• VGNB: This is van Ginneken’s algorithm on C-Tree ignoring
buffer blockages completely. This serves as a type of crude upper
bound on how well the other approaches are handling blockages.

TABLE I
EXPERIMENTAL RESULTS ONLARGE NETS

• VG: This is van Ginneken’s algorithm where blockage con-
straints are obeyed by labeling nodes that overlap blockages as
infeasible. For every wire segment partially contained within a
blockage, an additional buffer insertion location is considered on
the point where the wire and blockage intersect.

• RePath: For a C-Tree topology, each path between two nodesv

andw is rerouted if it overlaps with any buffer blockages. Note
that v andw can only be either a source node, a sink node or
a branch node. The paths are rerouted as in [2] such that their
path lengths are not changed while the total path length overlap-
ping with blockage area is minimized. Then, after segmenting,
van Ginneken’s algorithm is performed. This corresponds to the
proposed flow of first constructing a Steiner tree (C-Tree), then
making obvious, nonintrusive changes to the topology to avoid
blockages, followed by van Ginneken buffer insertion [3].

• RIATA: This is the basic version of our algorithm introduced in
Section III-B that adaptively adjusts VG to consider only one
more alternate point for each Steiner node. Note that the candidate
solutions generated by RIATA are a superset of VG, and, thus,
RIATA is guaranteed to perform no worse than VG.

• RIATA+: This is the RIATA+ algorithm introduced in
Section III-C. RIATA+ candidates are generally a superset
of RIATA candidates, though not strictly so due to potential
segmenting differences on alternative paths.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003 497

One can observe the following from the maximum slack results in
column 5 of Table I. First, buffer insertion certainly is a worthwhile
operation, as all buffer insertion methods significantly improve on the
solution NoBuf, which has no buffering. Second, RIATA andRIATA+
usually yield significantly better slack results than and VG and RePath.
Finally, the solutions fromRIATA+ are always superior to others and
are almost as good as VGNB in which blockages are ignored entirely.
Actually,RIATA+ outperforms VGNB for netbig3, because it finds
a better topology than C-Tree, even thoughRIATA+ obeys blockages
while VGNB does not.

In addition to timing performance, we show major resource expenses
(number of buffers, wirelength, and CPU time in seconds) in the right-
most three columns of Table I. We observe that RIATA uses roughly the
same number of buffers as VG or RePath while the number of buffers
used byRIATA+ is close to VGNB. Also, RIATA does not signifi-
cantly increase the wirelength of the low wirelength VG solutions while
the wirelength increase fromRIATA+ is greater. There is a moderate
increase in CPU time of RIATA versus VG, but they are virtually in the
same order. Not unexpectedly,RIATA+ consumes significantly larger
CPU time, since it explores a much larger solution space. Therefore,
RIATA andRIATA+ provide different solution quality and runtime
tradeoff. In the Section V, we will show that evenRIATA+ is much
faster than the simultaneous approach.

B. Comparisons With RMP

Besides VG and RePath, our next set of experiments compare
RIATA/ RIATA+ with the RMP algorithm [6], since its problem
formulation is almost same as ours. We obtained the executable of
RMP from the authors of [6]. As RMP is designed for relatively small
nets, we perform comparisons on sets of industrial nets with fewer
sinks than those considered in the previous experiments. In addition,
we run RMP in quick mode which is its faster heuristic version. We
randomly generate blockages and then construct the corresponding
extended Hanan grid for each test case. In order to compare to RMP’s
formulation, we intentionally marked some legal candidate buffer
sites on the Hanan grid as illegal to reduce the solution space since
otherwise RMP cannot complete in a reasonable amount of time.
Comparisons for RIATA and RMP both use the same set of possible
buffer locations. Comparisons giving slack and resource utilization
are shown in Table II.
RIATA+ outperforms RMP in six of the nine testcases on slack re-

sults. On net n730, the slack fromRIATA+ is greater than that from
RMP by 116 ps. Furthermore,RIATA+ shows superior advantage on
CPU time versus RMP. The best case for RMP is on net n313 where it
consumes about the same CPU time asRIATA+. When the number
of pins/buffer sites increase, the RMP’s CPU time quickly increases to
magnitude greater than RIATA/RIATA+. Clearly, RMP cannot be ap-
plied to thousands of nets in a physical synthesis type of optimization.
In addition, RMP usually uses more overall wirelength as well.

V. CONCLUSION

We propose RIATA/RIATA+, an adaptive tree adjustment tech-
nique that is integrated directly into van Ginneken’s classic buffer in-
sertion algorithm to handle buffer blockage constraints. Our experi-
ments show that this simple technique can give significant improve-
ments over van Ginneken’s original algorithm at a reasonable CPU
cost. Further, it is much faster and nearly as effective as the RMP ap-
proach, which searches a much larger solution space.

ACKNOWLEDGMENT

The authors would like to thank X. Yuan and J. Cong for providing
the RMP code.

TABLE II
EXPERIMENTS ONSMALL - AND MIDDLE-SIZED CIRCUITS

REFERENCES

[1] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer inser-
tion,” in Proc. ACM/IEEE Design Automation Conf., 1997, pp. 588–593.

[2] C. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay, and S. S. Sap-
atnekar, “A steiner tree construction for buffers, blockages, and bays,”
IEEE Trans. Computer-Aided Design, vol. 20, pp. 556–562, Apr. 2001.

[3] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B.
Liu, S. T. Quay, S. S. Sapatnekar, and A. J. Sullivan, “Buffered steiner
trees for difficult instances,”IEEE Trans. Computer-Aided Design, vol.
21, pp. 3–14, Jan. 2002.

[4] J. Cong. (1997) Challenges and opportunities for design innovations in
nanometer technologies. SRC Design Sciences Concept Paper. [Online].
Available: http://www.src.org

498 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

[5] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect-
driven floorplanning,” inProc. IEEE/ACM Int. Conf. Computer-Aided
Design, 1999, pp. 358–363.

[6] J. Cong and X. Yuan, “Routing tree construction under fixed buffer
locations,” in Proc. ACM/IEEE Design Automation Conf., 2000, pp.
379–384.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications. New York:
Springer-Verlag, 1997.

[8] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,”J. Appl. Phys., vol. 19, no. 1
, pp. 55–63, 1948.

[9] A. Jagannathan, S.-W. Hur, and J. Lillis, “A fast algorithm for context-
aware buffer insertion,” inProc. ACM/IEEE Design Automation Conf.,
2000, pp. 368–373.

[10] M. Lai and D. F. Wong, “Maze routing with buffer insertion and
wiresizing,” in Proc. ACM/IEEE Design Automation Conf., 2000, pp.
374–378.

[11] J. Lillis, C. K. Cheng, and T. Y. Lin, “Simultaneous routing and buffer in-
sertion for high performance interconnect,” inProc. Great Lakes Symp.
VLSI, 1996, pp. 148–153.

[12] X. Tang, R. Tian, H. Xiang, and D. F. Wong, “A new algorithm for
routing tree construction with buffer insertion and wire sizing under ob-
stacle constraints,” inProc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, 2001, pp. 49–56.

[13] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal elmore delay,” inProc. IEEE Int. Symp. Circuits
Syst., 1990, pp. 865–868.

[14] H. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations,” inProc.
ACM/IEEE Design Automation Conf., 1999, pp. 96–99.

Global and Local Congestion Optimization
in Technology Mapping

Davide Pandini, Lawrence T. Pileggi, and Andrzej J. Strojwas

Abstract—In this era of deep submicrometer technologies, interconnects
are becoming increasingly important as their effects strongly impact the in-
tegrated circuit (IC) functionality and performance. Moreover, logic block
size is no longer determined exclusively by total cell area and is often lim-
ited by wiring area. However, synthesis optimization objectives are focused
on minimizing the number and size of library cells. Methodologies that in-
corporate congestion within the logic synthesis objective function have been
proposed in the past. Nevertheless, we will demonstrate that predicting the
true congestion prior to layout is not possible, and the effectiveness of any
congestion minimization approach can only be evaluated after routing is
completed within the fixed die size. In this paper, we propose a practical,
complete methodology which first performs congestion-aware technology
mapping using a global weighting factor for the technology-dependent syn-
thesis cost function and then applies incremental localized unmapping and
remapping on layout congested areas. This complete approach addresses
the problem that one global factor is not suited for all layout regions of
the design, which might have very different routing demands. Most impor-
tantly, through the application of this methodology to industrial examples,
we will show that any attempt at a purely top–down single-pass conges-
tion-aware technology mapping is merely wishful thinking.

Index Terms—Congestion estimation, logic synthesis, physical design,
placement, routability, routing, technology mapping, wiring congestion.

I. INTRODUCTION

In deep submicrometer (DSM) technologies, interconnects play a
crucial role in the overall performance of very large scale integration
(VLSI) systems [1]. For technologies of 0.25�m and below, inter-
connect capacitance becomes dominant with respect to gate capaci-
tance, thus rapidly increasing the interconnect induced delay (as a per-
centage of the overall path delay). Therefore, the impact of intercon-
nects on performances has to be carefully evaluated in order to sat-
isfy the design constraints during all phases of the traditional appli-
cation specified integrated circuit (ASIC) top-down design flow. The
interconnect models used in timing-driven layout tools are essentially
based on fan-out loading and predefined net configurations. However, a
fan-out-based model for delay estimation can be highly inaccurate for
modeling the actual interconnect delay prior to layout, since, by not
considering the actual topology of the wires, it cannot accurately pre-
dict the distributedRCeffects [3]–[5]. As a consequence, many itera-
tions between logic synthesis and physical design are usually necessary
to achieve the timing closure. Unfortunately, this iterative process does
not have any guarantee of convergence, and significant changes to the
high-level description of the circuit may be necessary, thus, introducing
a critical bottleneck for tight time-to-market targets. While the prob-
lems of timing convergence due to these inaccuracies are well studied,
of equal importance is the impact of wiring on defining the block or
chip size, in particular for logic synthesis, which traditionally has at-
tempted to minimize cell area in order to minimize the area of a logic
block orIC. Traditionally, optimization focused on the total cell area for

Manuscript received June 1, 2002; revised September 20, 2002. This work
was supported by the Central Research and Development of STMicroelec-
tronics, Inc. This paper was recommended by Guest Editor C. J. Alpert.

D. Pandini is with the Central Research and Development, STMicroelec-
tronics, Agrate Brianza, 20041, Italy (e-mail: davide.pandini@st.com).

L. T. Pileggi and A. J. Strojwas are with the Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: pileggi@ece.cmu.edu; ajs@ece.cmu.edu).

Digital Object Identifier 10.1109/TCAD.2003.809646

0278-0070/03$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

