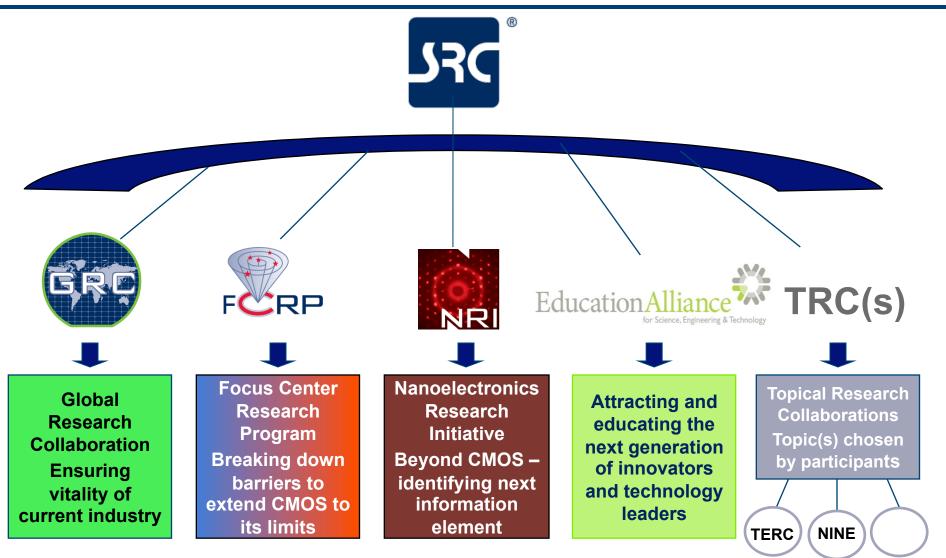
The New Future of Design Automation Research

William H. Joyner, Jr.
Semiconductor Research Corporation


SIGDA/DAC University Booth 46th Design Automation Conference San Francisco, California

Semiconductor Research Corporation A Family of Distinct, Related Program Entities

The Semiconductor Research Corporation's Global Research Collaboration

- SRC-GRC is a not-for-profit consortium of member companies and agencies supporting 540 research tasks at 120 universities worldwide, with 550 faculty investigators, 600 graduate students (including 35 on SRC fellowships/ scholarships), mentored by 600 employees from member companies.
- SRC's employees and industry assignees work with a Board of Directors and technical advisory boards composed of members from participating companies.

2009 University Research Program

Computer-Aided Design and Test Sciences (CADTS)

- Logic and Physical Design
- Test and Testability
- Verification

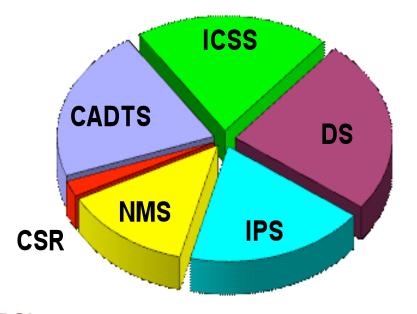
Integrated Circuit and System Sciences (ICSS)

- Circuit Design
- Integrated Systems Design

Device Sciences (DS)

- Digital CMOS
- Memory Technologies
- Modeling and Simulation
- Compact Modeling
- Analog/Mixed-Signal Devices

Nanomanufacturing Sciences (NMS)


- Patterning
- Factory Systems
- •ESH

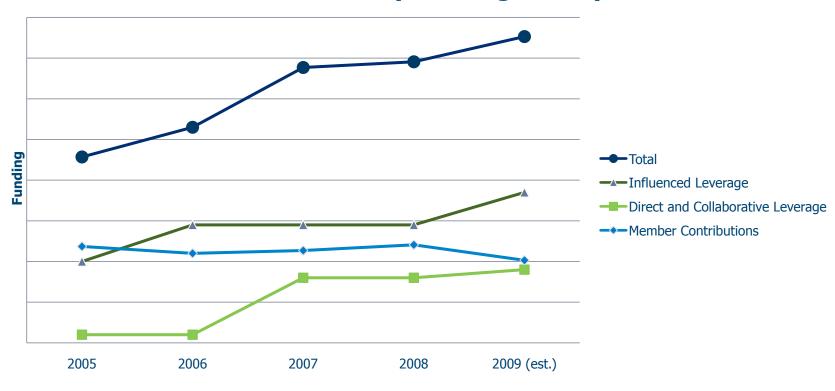
Interconnect and Packaging Sciences (IPS)

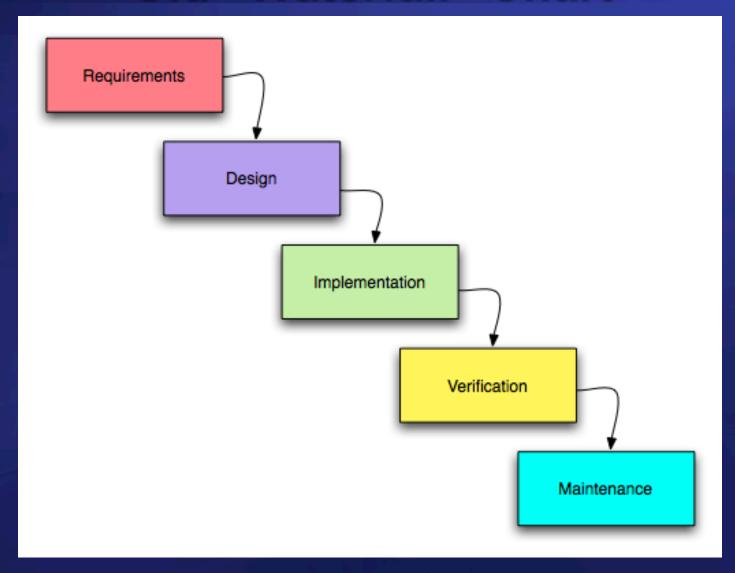
- Packaging
- Back-End Processes

Cross-disciplinary Semiconductor Research (CSR)

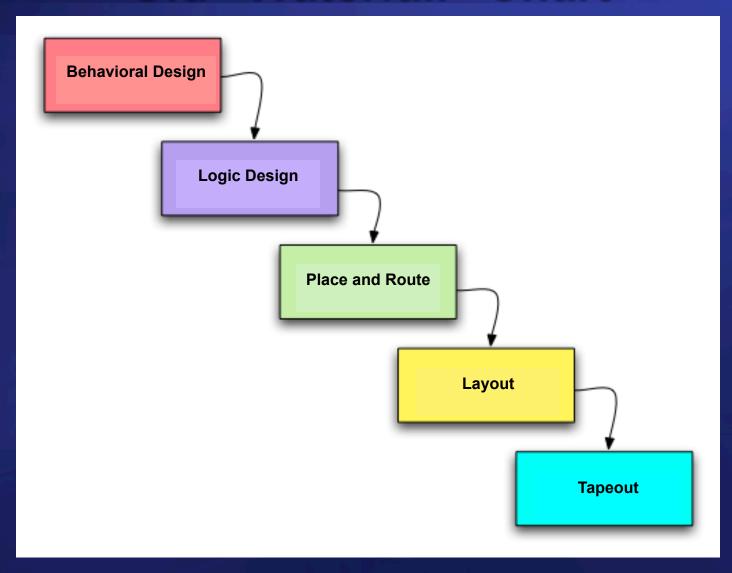
Exploratory grants

SRC-GRC Members and Partners

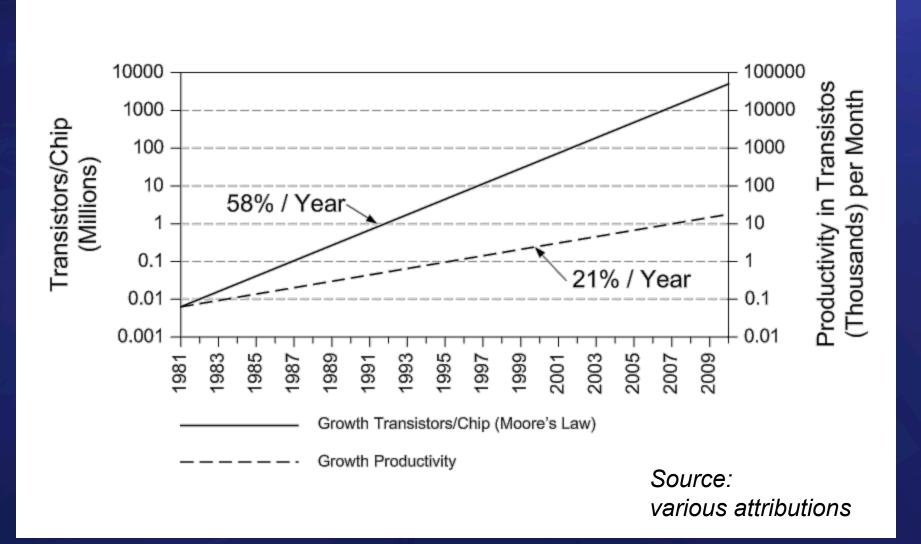



GRC University Funding History

"Brave New World"


- "Community, Identity, Stability"
 - Aldous Huxley, Brave New World, 1932
- A community of experts from industry and universities, representing multiple disciplines
- Renewed identity as an exciting research area
- Stability of support for research and education

Old "Waterfall" Chart



Software

Old "Waterfall" Chart

Old "Productivity Gap" Chart

Old "Superexponential" Chart

Superexponential Design Complexity

Thousands

Transistors

Functionality + Testability

Functionality + Testability + Wire Delay

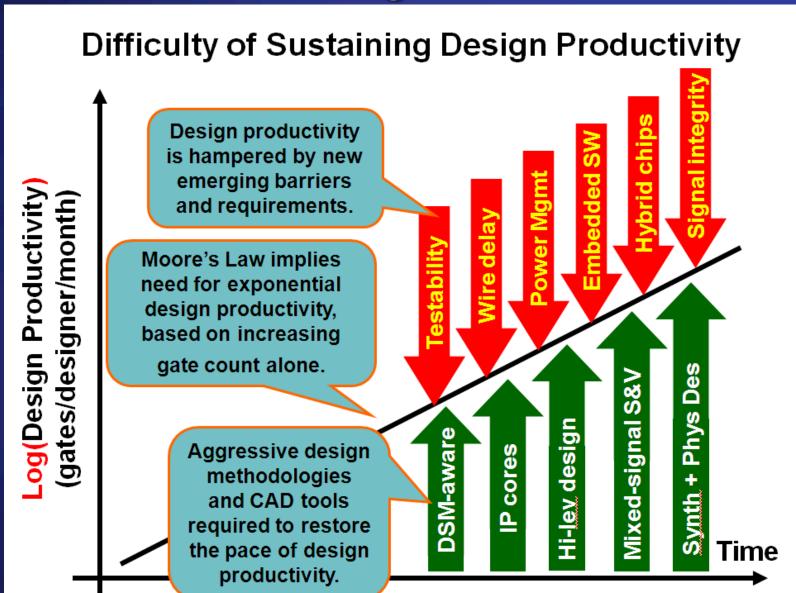
Functionality + Testability + Wire Delay + Power Mgmt

Functionality + Testability + Wire Delay + Power Mgmt
+ Embedded software

Functionality + Testability + Wire Delay + Power Mgmt + Embedded software + Signal Integrity

Functionality + Testability + Wire Delay + Power Mgmt + Embedded software + Signal Integrity + Hybrid Chips

Functionality + Testability + Wire Delay + Power Mgmt + Embedded software + Signal Integrity + Hybrid Chips + RF

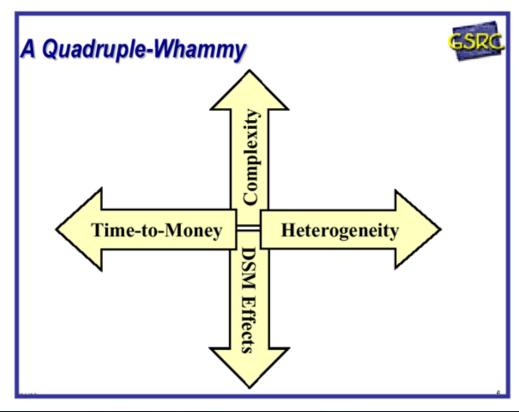

Billions

Functionality + Testability + Wire Delay + Power Mgmt + Embedded software + Signal Integrity + Hybrid Chips + RF + Packaging

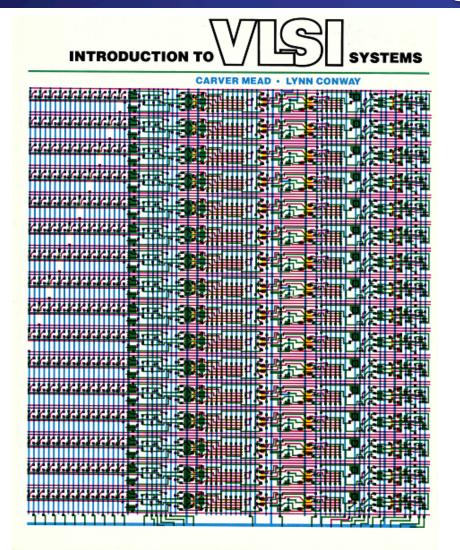
Functionality + Testability + Wire Delay + Power Mgmt + Embedded software + Signal Integrity + Hybrid Chips + RF + Packaging + Mgmt of Physical Limits

- ✓ Exponentially growing number of elements (devices & wires)
- ✓ Design complexity is exponential function of element count

Old "Wilting Rod" Chart

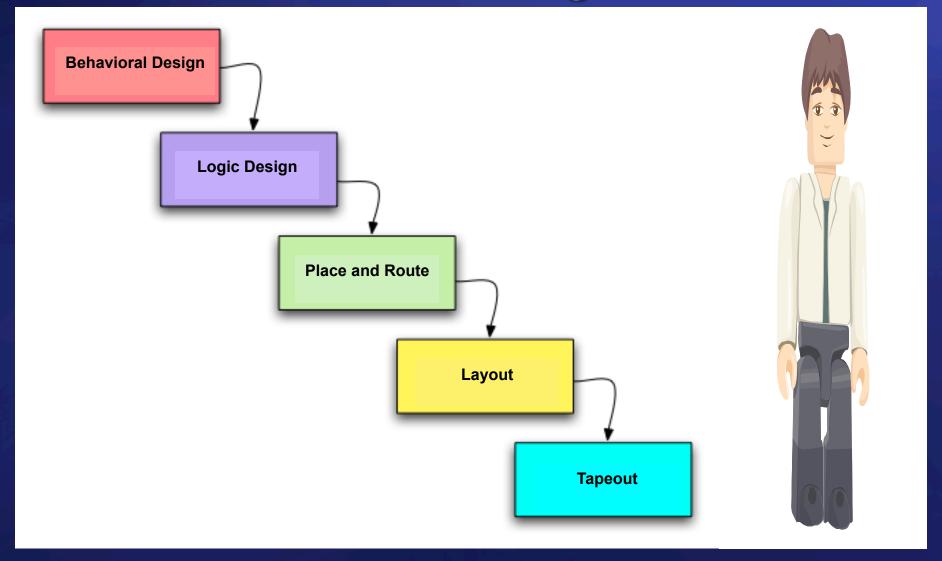

Old "Quadruple Whammy" Chart

"Quadruple Whammy" for Design and Tools

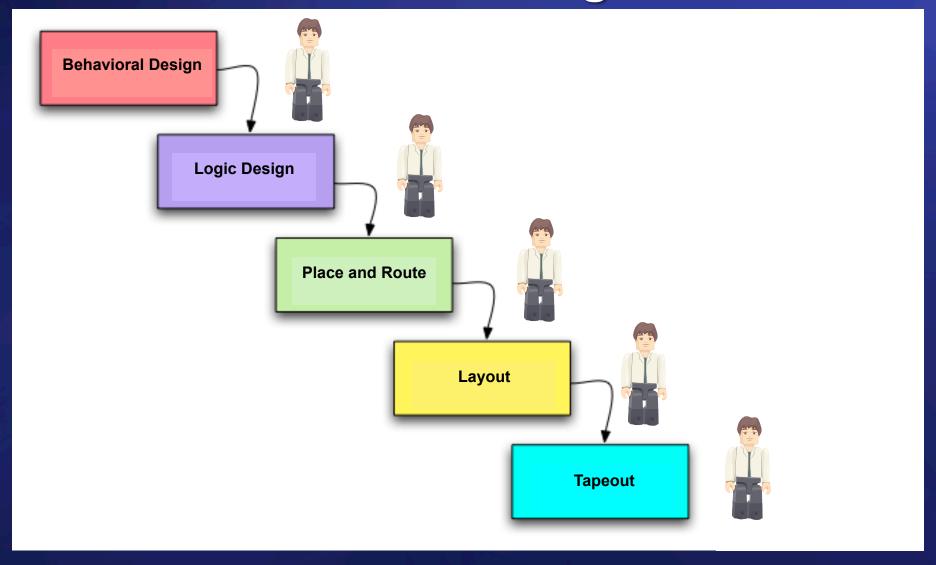

- Design of each transistor and wires harder
- Exponentially more transistors
- More elements doing different things
- Greater design risk, greater variety, and smaller design window

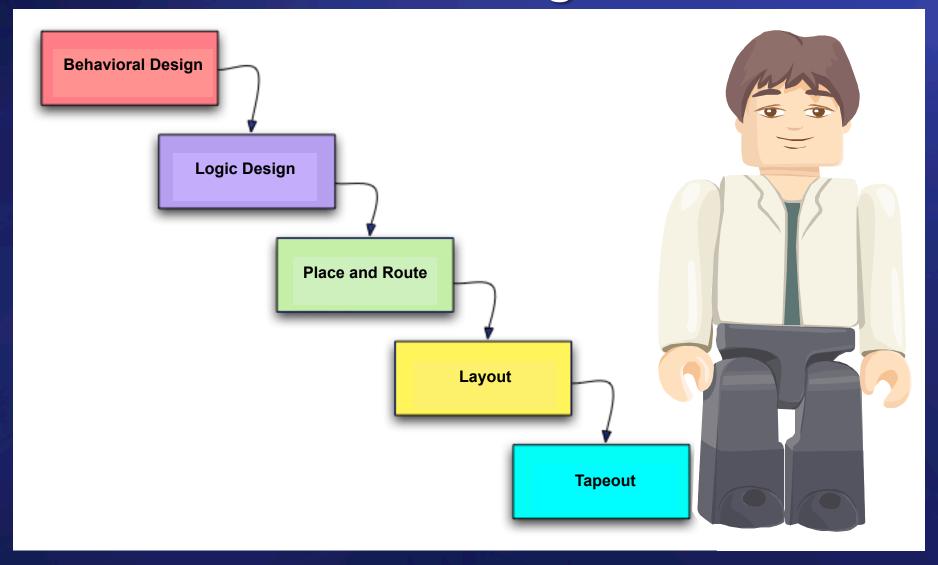
Source: Kurt Keutzer

20th century



Tall Thin Designers




Tall Thin Designers

Short Thin Designers

Tall Fat Designers

Foundations of Computer Science

FOCS 2008
1/78 in circuit and logic design/minimization

FOCS 1960, 1961 30/33 in circuit and logic design/minimization Muroga, Akers, Roth, McCluskey, Karp, . . .

FOCS 2009

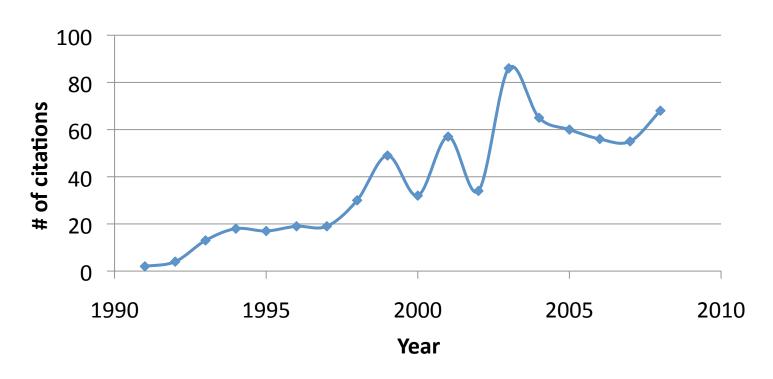
50th Annual IEEE Symposium on Foundations of Computer Science

> October 24-27, 2009 Atlanta, GA

Examples of the research articles in semiconductors that resulted in Nobel Prizes

	Nobel Prize		# of citations	
Article	in:	for:	25 years from publication	through 2008
Bardeen J, Brattain WH "The Transistor, a Semi-conductor Triode", Phys. Rev. 74 (2): 230-231 1948	1956	Discovery of semiconductor transistor	71	235
Esaki L, "New Phenomenon in Narrow Germanium p-n Junctions", Phys. Rev. 109 (1958) 603	1973	Discovery of tunnel diode	247	547
Kroemer H, "Heterostructure Bipolar-transistors and Integrated- circuits", Proc. of the IEEE 70 (1982) 13	2000	Invention of heterojunctions	577	609

Source: Victor Zhirnov, SRC


Publication Lifetime*

Example: Design/CADTS

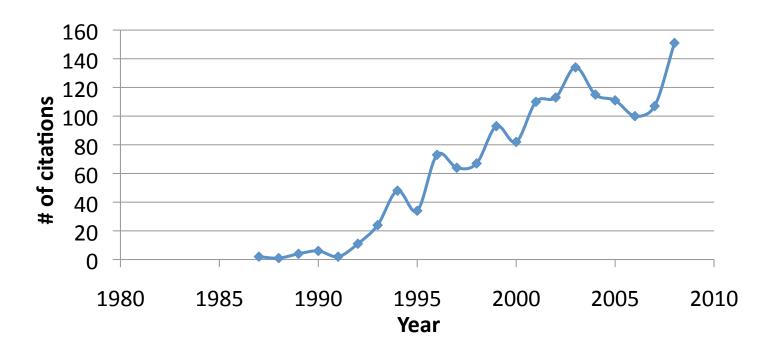
"Asymptotic Waveform Evaluation for Timing Analysis", by Pileggi and Rohrer, IEEE Trans. Computer-Aided Design 9 (4)352 (1990)

677 citations

188 citations by industry (28%)

^{*}Average lifetime is 5 years

Source: Victor Zhirnov, SRC


Publication Lifetime*

Example: Design/CADTS

"Graph-based Algorithms for Boolean Function Manipulation" by R. E. Bryant, IEEE Trans. Computers 35 (8): 677 (1986)

1443 citations

283 citations by industry (25%)

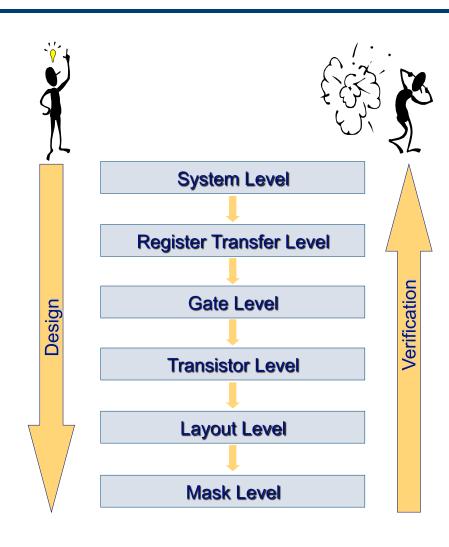
Three Grand Challenges in Design Automation

Challenges in design automation are many, but they can be grouped into three areas:

- System-level design is needed at the top to increase the productivity of designers – otherwise efficient use cannot be made of advanced devices and materials
- Robust optimization in the middle is necessary to contain the exploding complexity of systems and to offset the diminishing returns afforded by feature size shrinkage
- Design for manufacturing at the back end (and throughout the flow) is critical to assure that we can produce products using new technologies

Models and **abstractions** are key at all levels of the design process Source: 2006 NSF Forum

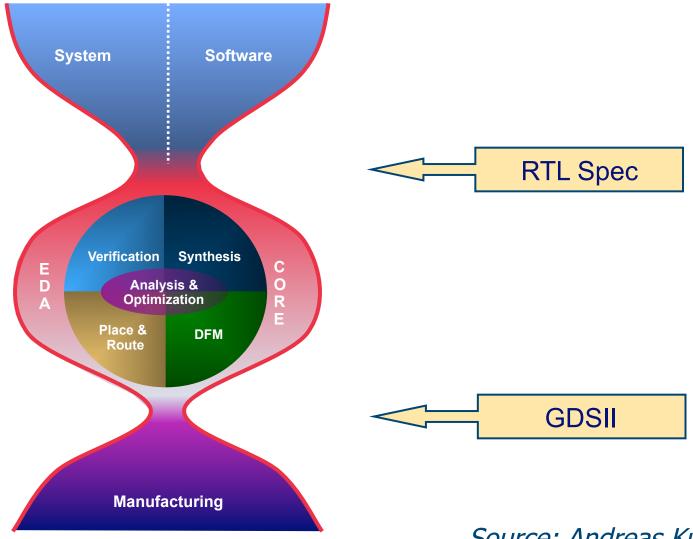
System-Level Challenges



- System level techniques are needed to achieve shorter design times with higher quality to address system level problems: clock, power management, interconnection, fault tolerance, ...
- Design tools must extend to where design is going, including the software level
- A compositional method of designing and connecting modules such that the functionality and performance are predictable is needed; it must be aware of implementability, verification, test, and reliability
- A design flow and methodology must enable more sophisticated handoffs; a collaborative framework must focus on the interfaces between abstraction levels to allow stable robust, reusable design IP
- We must be able to implement hybrid systems efficiently model, explore, design, optimize, and integrate non-digital functionality (MEMS, NEMS, analog/RF, sensors/transducers, photonics, biological, ...)

Ever Increasing Design Flow Complexity

- Expansion of traditional RTL-to-layout DA support
 - Upwards: System specification, transaction level modeling, behavioral synthesis
 - Downwards: RET, OPC, yield optimization through postlayout manipulations, etc.
 - In between: more and more complex optimizations



Source: Andreas Kuehlmann 24 2006 NSF Forum

Most of Design Automation Today Focuses on the "Middle"

Source: Andreas Kuehlmann 2006 NSF Forum 25

Optimization Challenges

- Optimization algorithms must be what many of today's design automation techniques are not: stable, scaleable, and robust
- Design automation must leverage optimization technology casting problems in optimization terms opens a new resource of partnerships in cross-disciplinary research that can lead to better optimization engines
- Optimization algorithms need to handle multiple objectives simultaneously to address critical power, variability, manufacturability,
- Techniques must globally optimize performance across layers of abstraction and diverse technologies

- Design for manufacturing must move from handling variability to robust operation in the face of failures from multiple sources
- Design tools must comprehend multiple options associated with new devices, new materials, fabrics and 3D stacking
- Communication between layout/design must go beyond sets of rules to process/manufacturing understanding at all levels.
- Tools must comprehend hybrid devices and materials as well as emerging nontraditional applications (bio, sensor, medical, etc.)
- Design techniques addressing these late-CMOS technology challenges must bridge to beyond-CMOS nanotechnologies as well

Recommendations

- Since design automation is critical to advancing our computing capability for the 21st century:
 - NSF should support a collaborative platform for design automation research pushing towards beyond-CMOS technologies
 - NSF must establish and support multidisciplinary partnerships to enable the design technology work necessary for 21st century leadership:
 - ✓ enabling system-level design in partnership with the software and architecture areas
 - ✓ with larger-scale, more robust **optimization** to provide more complex systems and keep on Moore's Law pace
 - ✓ at the **nanoscale** to take design technology from novel devices to system-level applications

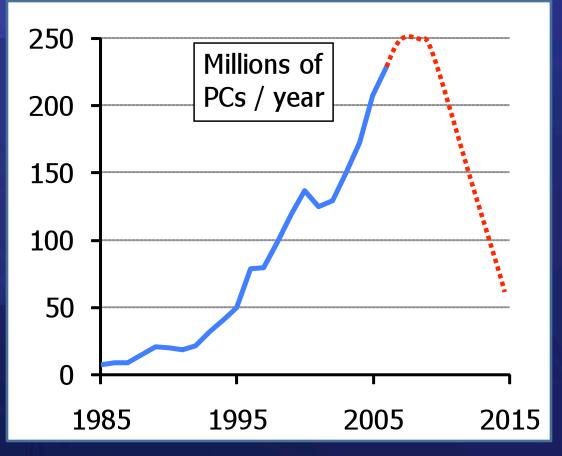
Why Should NSF Worry about Design Technology?

- Design will be a key differentiator for US competitiveness and national security.
 - US must have the most productive designers
 - Design costs dominate they need to be dramatically reduced in terms of team size, design time, etc. to maintain US lead
- National support for design research is diminishing in US, increasing elsewhere.
 - China, Europe, Taiwan, and Canada all support university-based design research infrastructure
 - National strategy in design needs to match national investment in materials and technologies
 - Education funding must help supply trained scientists and engineers
- Moore's Law is a critical enabler for advances in computing and its future depends on design
 - Materials and process technology alone cannot keep us on the Moore's Law curve.
 - Advanced applications DNA sequencing, astrophysics, cryptography rest on this computational foundation
 Source: 2006 NSF Forum

The 2006 Forum – A Report Card

A National Design Initiative (NDI)	11 199	INC
System design science	INC	
Robust optimization methodologies	В	
Interface to manufacturing	В	
Collaborative research framework:		INC
Access to leading edge fabrication technologies	С	y y-
A computational discovery environment	?	
Opportunities for design of innovative integrated electronic systems	INC	
\$50M per year for five years through a cross-directorate initiative by NSF		INC

What's New (Well, Not Really New)


- New emphasis on parallelism
- New ITRS design and software emphasis
- New focus on applications
- New post-CMOS technologies
- New (old) predictions about the death of EDA

The Sequential Peril

Cores not faster + no parallel improvement

- → SW not faster
- → no new PC sales except for wearout
- → sales drop 250M

50M

Source: Dave Patterson, SRC, 2004

SRC/NSF Joint Program on Multicore Design and Architecture

- Joint needs development, solicitation, and selection of projects in multi-core architecture, design, tools, and interconnect
- \$10M, 3-year program
- 28 new tasks from 27 universities with 43 faculty (including 17 new investigators and 7 former SRC students) selected for 8/09 starts

New Emphases in 2008 ITRS

- Importance of software as an integral part of semiconductor products
- Software design productivity as a key driver of overall design productivity
- Heavy use of special purpose multi-core architectures
 as a key enabler of productivity growth
- Continued emphasis on system-level design
- Special section on energy
- New term *Design Equivalent Scaling* refers to design technologies that enable high performance, low power, high reliability, low cost, and high design productivity.

4

Compelling Laptop/Handheld Apps

Health Coach

- Since laptop/handheld always with you, Record images of all meals, weigh plate before and after, analyze calories consumed so far
 - "What if I order a pizza for my next meal? A salad?"
- □ Since laptop/handheld always with you, record amount of exercise so far, show how body would look if maintain this exercise and diet pattern next 3 months
 - "What would I look like if I regularly run 2 miles? 4 miles?"

Face Recognizer/Name Whisperer

 Laptop/handheld scans faces, matches image database, whispers name in ear (relies on Content Based Image Retreival)

Source: Rob Rutenbar

Ultimate Measures of Success...

For the *technologist*:

I/V curve in Nature

gist: For the circuit designer:

ure Best Paper Award at ISSCC

(Rob Rutenbar, 2004)

WETRICAL AND ELECTRONICS NGINEERS CALLERSITY OF PENNSYLVANIA For the *circuit designer*:

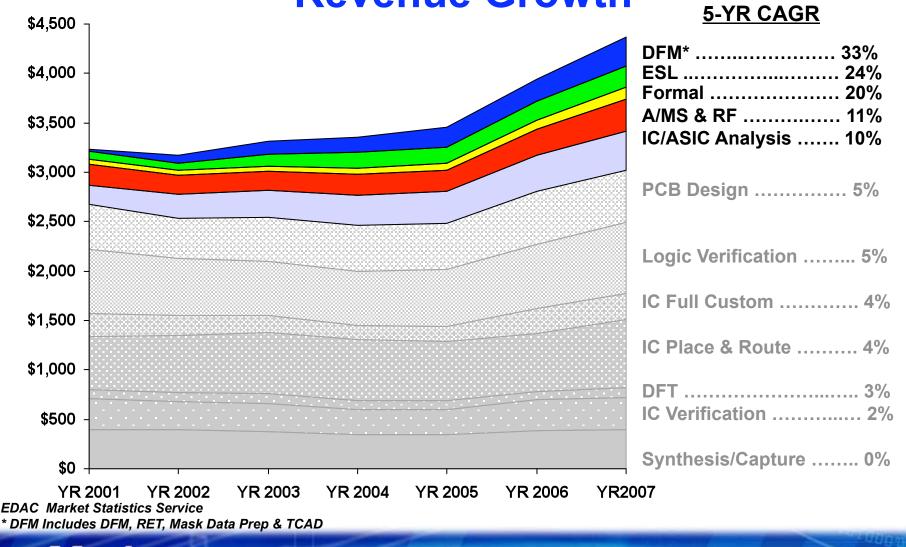
Algorithms, Coding, Logic, Architectures, Applications

Key question: Will the behavior of nanodevices be so strange that our "higher level" abstractions need to change?

Key answers:

NO, a switch is a switch

YES, that's the whole idea


NRI 2009 Architecture Benchmarking Exercise

Magnetic Tunnel Junction	Markovic	UCLA	WIN
Spin Wave Devices	Khitun	UCLA	WIN
Mag Dot Logic	Roychowdhury	UCLA	WIN
BiSFET	Register	UT	SWAN
Graphene Veselago Devices	Lee	SUNY	INDEX
Excitons	Baldo	MIT	INDEX
Magnetic Rings	Ross	MIT	INDEX
Tunnel FETs	Seabaugh	ND	MIND
Nanomagnet logic	Niemier	ND	MIND
Plasmonic logic	Mazumder	Michigan	MIND
Graphene thermal logic	Chen	Purdue	MIND
Graphene spin transport	Ye	Purdue	MIND
Binary Decision Diagram Arch	Datta	PSU	MIND
Multiferroic based devices	Salahuddin	UCB	WIN

EDA Myths and Realities in 2009

- EDA igrewterionepantovanities poloaise from solving new problems
- Adoption of heaviteg-lendgle-gyeins is towdingtor technology is the same rate as in the past
- Dvære iand de De provent kent at ket is zeschlniere lidi accompinantiers ityreate oppostenities for market share changes
- EDMpastes deciteating betgessingerastersetemiconductor manufacturing cost
- Companies acensiooticeatisiongayonootilegstowaatasisnglesigendabflowsplatforms
- Semiconductor industry hasomatolidetingonsolidating

New Methodologies Drive EDA Revenue Growth

What Next

- A community of experts from industry and universities, representing multiple disciplines
- Renewed identity as an exciting research area
- Stability of support for research and education

The Food Pyramid

There needs to be pull from up here

And there need to be models and tools that connect them

There is much investment and bottom-up work here

Appl Algorithm Language

Compute Model

ISA

Functional Block

Logic

Circuits

Devices

Structures

Materials

Physics / Chemistry

Source: Rob Rutenbar

What Next

- Strengthen the links between theory of computation and design automation
- Maintain strong industry/university/government partnerships
- Grow support for design and design automation as increasingly important contributors to the roadmap forward

What Professional Societies Do to Support the New Future of Design Automation Research

- Conference sponsorship: DAC, ICCAD, DATE, ASP-DAC, . . .
- Publications: TODAES, TCAD, ESL, newsletters, . . .
- Awards: Dissertation, New Faculty, Newton, McCalla, Fellows, . . .
- Events: University Booth, Ph.D. Forum, workshops, speakers, . . .
- Fellowships, grants, . . .

What You Can Do

- Do research
- Support research
- Contribute to publications
- Read publications
- Come to conferences and workshops and interact
- Join and support professional societies

Be a part of the new future of design automation research!

THANK YOU!