Droplet-Routing-Aware Module Placement for Cross-Referencing Biochips

Zigang Xiao, Evangeline F. Y. Young

Department of Computer Science and Engineering
The Chinese University of Hong Kong

ISPD ’10, San Francisco
California, USA
Mar. 17th, 2010
Outline

1. Background: Biochip & CAD
2. Problem Formulation & ILP Modeling
3. Experimental Result
4. Conclusion
Background – DMFB and CAD

- **Digital Microfluidic Biochip (DMFB)**
- **Droplet** – Carrier of biochemical reaction material

On-chip resources:
- Dispenser
- Waste reservoir
- Optical detector

Basic operations:
- Mixing
- Dilution
- Optical detection
- Storage

Top-down design flow [Su ICCAD'04]
Chip Spec:
Size
Dispensers
TIME Constraint...

Chip Specification, Assay Description

Placement Problem - Illustration

Time 0-2
Time 2-4
Time 4-6
Time 6-8
After Placement: Routing On Biochip

- Placement will greatly affect the routing:
 - Not a good placement result
 - Should coordinate during routing – downgrade to sequential
 - Also in the biochip routing….
 - The chip type also affects the routing!
Cross-Referencing Biochip

In Cross-Referencing we apply a sequence of Voltage Assignment

(Cite from [Yuh DAC’08])

Special and hard problem:

- Routing several droplets simultaneously - Electrode Interference
Cross-Referencing Biochip - Block

- Issue of block (confirmed from DukeU)

If applied…

We assume extra-activated cell inside is fine. Still mixing inside

Cannot apply L to column 1~4

- Should be handled during routing.
Previous Work

- [Su DAC’05], [Su DATE’05], [Xu DAC’07], proposed methods based on *Simulated Annealing* (SA), using different representations. Fault-tolerance issue is also considered in their works.

- [Yuh JETC’07] proposed *T-tree based representations* to be used in SA.

- Note that none of them aimed on designing for *Cross-referencing DMFB*.

Outline

1. Background: Biochip & CAD
2. Problem Formulation & ILP Modeling
3. Experimental Result
4. Conclusion
Problem Formulation

- **Input:**
 - Scheduling and resource binding result
 - Chip specification:
 - Timing constraint T
 - Chip size $W \times H$
 - Optical Detectors
 - Reservoir, dispenser

- **Output:**
 - Placement result, including:
 - Location of modules, reservoir and dispenser
 - Nets
Overview of Our Approach

Chip Spec:
Size
Dispensers
TIME Constraint

Routing & Evaluation

Output

Pins

Pin Generation

Decide dispenser and reservoir location

ILP formulation

\[
M^i_x - M^j_x - X(M^j) + L(c_1 + c_2) > 1
\]

\[
M^j_x - M^i_x - X(M^i) + L(c_1 + 1 - c_2) > 1
\]

\[
M^i_y - M^j_y - Y(M^j) + L(1 - c_1 + c_2) > 1
\]

\[
M^j_y - M^i_y - Y(M^i) + L(2 - c_1 - c_2) > 1
\]
ILP Formulation of Placement

1. Validity constraint
2. Non-overlapping and separation constraint
3. Optical detector constraint
4. Reservoir constraint

- Core idea: how to utilize the properties of Cross-Referencing DMFB?
- Objective function:
 - Sum of extended covered area
1. Validity of modules

Should be inside chip, one space away from boundary (otherwise block reservoir!)
2. Non-overlapping and separation

Guarding ring can be SHARED

Modules cannot overlap if co-exist at some time
3. Optical detector resource constraint

Dt1, Dt2 bound to the same optical detector, should be at the same place!

Time=8~0
Minimize the sum of ECAs: rationale 1 – handles interference issue

- For multiple droplets: reduce the possibilities of interference between routes
ILP - Extended Covered Area (ECA) - cont.

Tries to minimize the overall moves in the whole assay

Rationale 2:

For a single droplet, also minimizes the time 6-8 Manhattan distance of route
Objective

4. Bounding box of routes and objective

Objective = sum of all these ECAs

Subproblem $i+1$
Partition of Problems

- Some benchmarks contain numerous subproblems
- If solve as one ILP
 - # variables: 2069
 - # constraints: 4154
- Split it into several sets
- Output of subproblem i serves as input of subproblem i+1

Example: splitting into two sets
Outline

1. Background: Biochip & CAD
2. Problem Formulation & ILP Modeling
3. Experimental Result
4. Conclusion
Experiment Setup

- Environment:
 - lp_solve 5.5
 - Intel 2.4GHz CPU
 - 1.5G Ram

- Four sets of real world benchmarks
 - In-vitro
 - In-vitro2
 - Protein
 - Protein2

- A droplet router for cross-referencing biochip is adapted and used to evaluate the placement result [Xiao ASPDAC’10].
Experimental Result – Comparison

Comparison of In-vitro

<table>
<thead>
<tr>
<th>Benchmark</th>
<th># sub*</th>
<th>Size</th>
<th>Routing on [Yuh J ETC’07]</th>
<th>Routing on our placement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max/ Avg. cycle</td>
<td>SSº</td>
</tr>
<tr>
<td>In-vitro</td>
<td>11</td>
<td>16x16</td>
<td>20/ 12.09</td>
<td>12</td>
</tr>
<tr>
<td>In-vitro2</td>
<td>15</td>
<td>14x14</td>
<td>19/ 10.73</td>
<td>23</td>
</tr>
<tr>
<td>Protein</td>
<td>64</td>
<td>21x21</td>
<td>20/ 15.52</td>
<td>38</td>
</tr>
<tr>
<td>Protein2</td>
<td>78</td>
<td>13x13</td>
<td>20/ 9.87</td>
<td>40</td>
</tr>
</tbody>
</table>

* #sub: number of subproblems in a benchmark.

o SS=Stalling Steps. Total number of stalling during routing.
Sample Placement Result (*In-Vitro1*)

Subproblem 1:

Subproblem 5:
Harder Case

- From Protein2, small chip size with many on-going modules and nets.

Subproblem 37: five modules, six nets
Conclusion

- An ILP-based routing-aware placement method is presented and evaluated.

- The properties of cross-referencing is beneficial to routing. The objective function is simple but effective, and should be explored MORE.

- To better compare the solution quality, harder bioassay/protocol is needed to perform the placement and routing (both results are 100% routable for the router)
-Thank You -