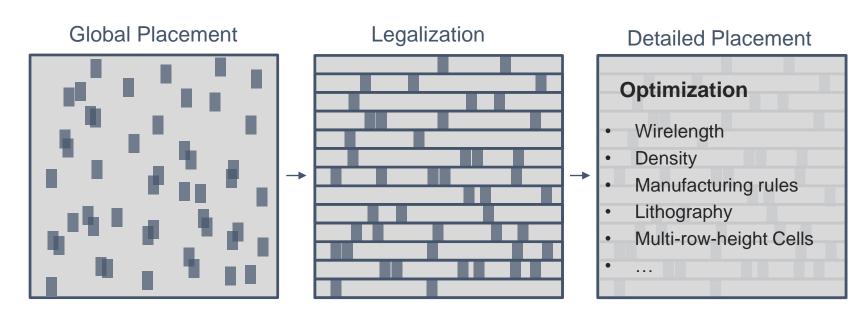
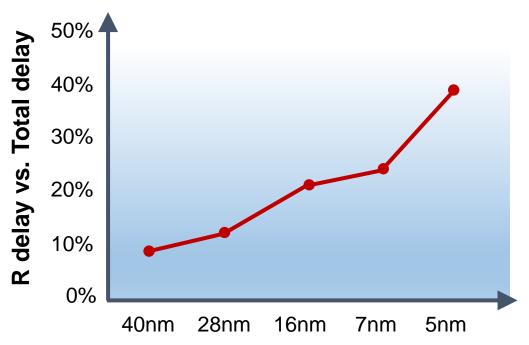

Via Pillar-aware Detailed Placement

Yong Zhong, Tao-Chun Yu, Kai-Chuan Yang, and Shao-Yun Fang

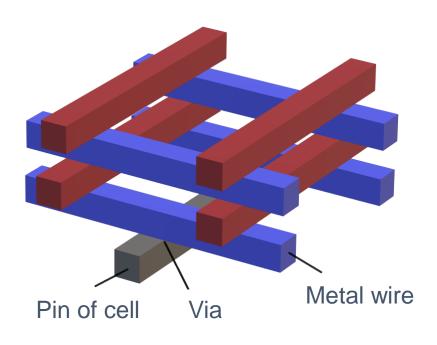
The Electronic Design Automation Laboratory
Department of Electrical Engineering
National Taiwan University of Science and Technology


Outline

INTRODUCTION

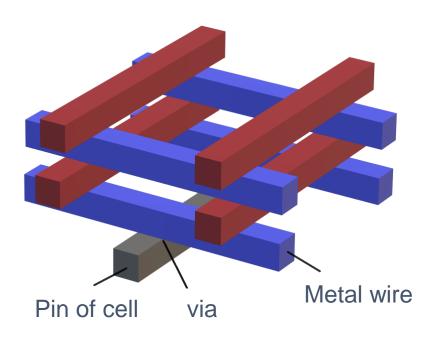

Detailed Placement

- In the VLSI physical design flow, placement consists of 3 stages:
 - (1) Global placement
 - (2) Legalization
 - (3) Detailed placement
- Detailed placement focuses on improving the legalized placement solution, while keeping its legality


Via Pillar

- Feature size has shrunk down to 7 nm and beyond
 - The impact of wire resistance is significantly growing
 - The circuit delay incurred by the metal wires is noticeable raising
- A new technique "Via Pillar" (or via pillar) is proposed

L. -C. Lu, Physical Design Challenges and Innovations to Meet Power, Speed, and Area Scaling Trend", ISPD, 2017


Structure of Via Pillar

Structure of Via Pillar

- Multiple vias
- Multiple metal wires
- Cross multiple layers (generally)

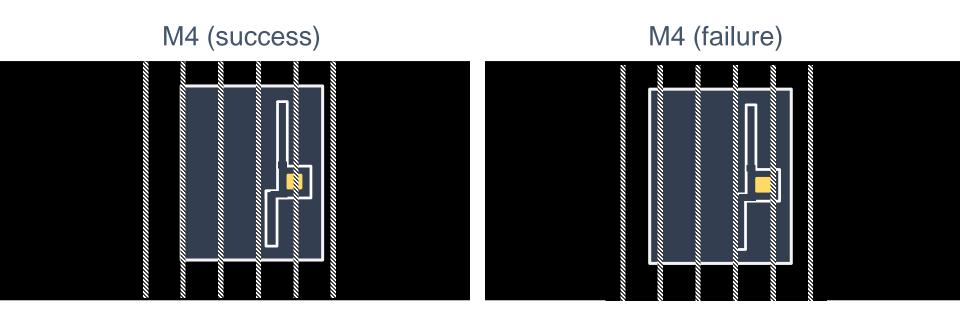
Benefits of Via Pillar

Benefits of Via Pillar

- Reduce Wire Resistance
- Reduce Circuit Latency
- Enhance Reliability
- Enhance EM robustness

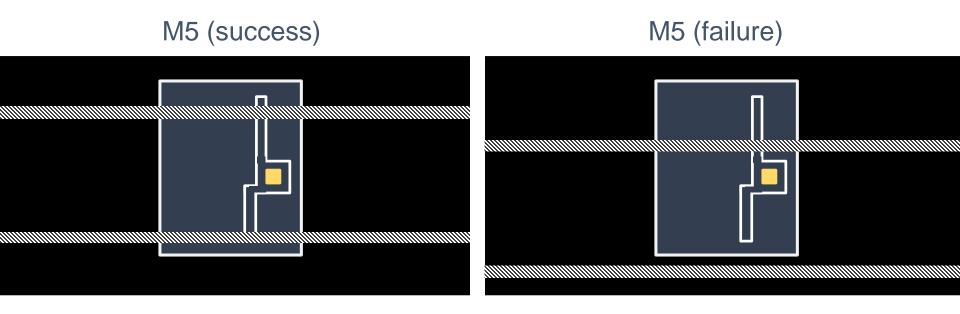
Benefits of Via Pillar

L. -C. Lu, Physical Design Challenges and Innovations to Meet Power, Speed, and Area Scaling Trend", ISPD, 2017


Problem on Via Pillar Insertion

Major issues that cause poor Insertion success rate:

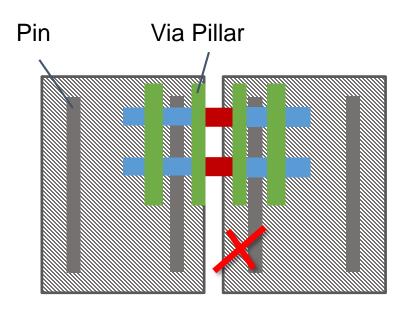
- Track Alignment Issue
- Power/Ground Stripe Overlapping
- Insufficient Margin Area

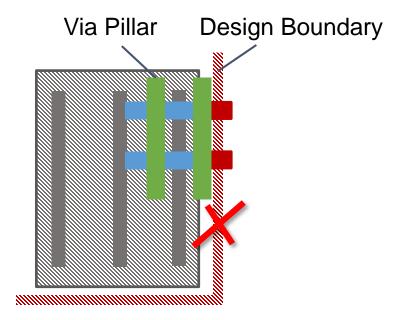

Track Alignment Issue

In our experiments, we found that the via pillar insertion may fail when the access point is not at a certain position w.r.t. its adjacent tracks

Track Alignment Issue (cont'd)

In our experiments, we found that the via pillar insertion may fail when the access point is not at a certain position w.r.t. its adjacent tracks

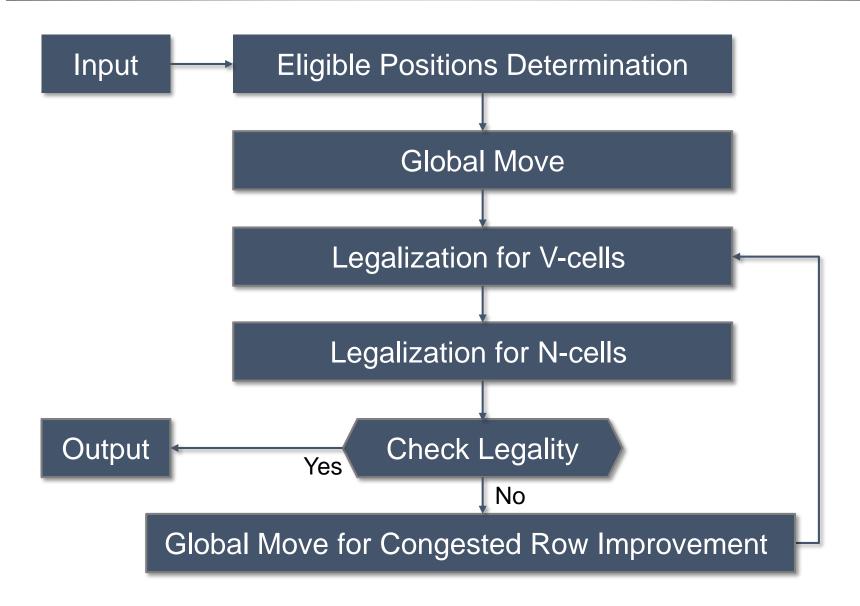

Power/Ground Stripe Overlapping


- If the structure overlaps with a power/ground (PG) stripe, the insertion of the via pillar will fail
- Denser or wider PG strips will result in fewer eligible positions, more difficult to optimize the result

Insufficient Margin Area

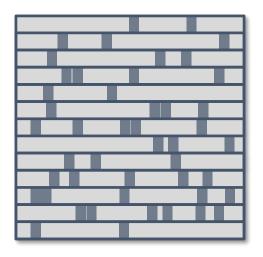
If a via pillar structure overlaps with another via pillar or design boundaries, the insertion will fail

Previous Works

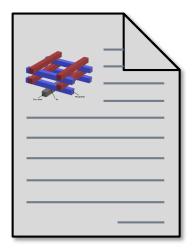

- The research on detailed placement have been developed in decade that address various issues
 - Wirelength
 - Density
 - Manufacturing rules
 - Lithography
 - Multi-row-height Cells
 - However, none of these works has focused on via pillar insertion in the detailed placement stage

ALGORITHM

Terminology


- An N-cell is a cell that is not concerning via pillar (normal cell)
- □ A V-cell is a cell that will be inserted a via pillar
- An eligible row/site/position indicates the position with maximized insertion rate
 - No track alignment issue
 - No overlap with any PG stripe
- MDC is the maximum displacement constraint that prevents from a large movement

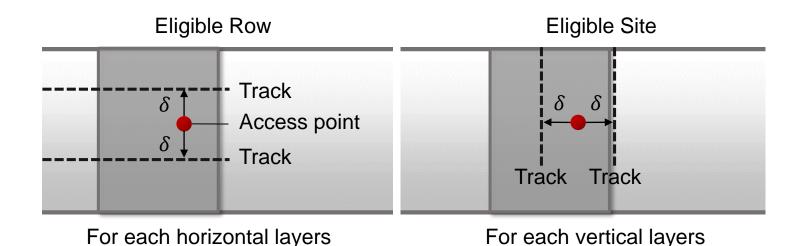
Algorithm Flow



Input

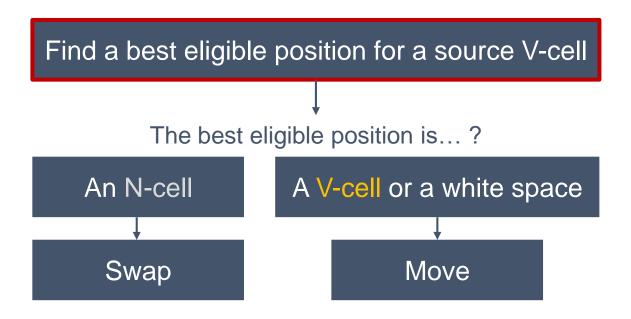
Placement Result

Configure file



List of via-pillar inserting cells

Eligible Positions Determination


 To enhance the via pillar insertability, we determine all the eligible positions for all V-cells

- 1. Filter out positions overlap with PG stripe
- 2. Filter out positions with track alignment issue

Global Move

The goal of this step is to move all V-cells in ineligible rows to eligible sites

Global Move (cont'd)

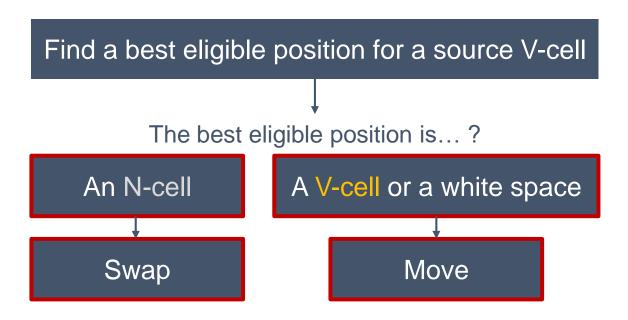
- For each V-cell, We first find a best eligible position
- We traverse all eligible sites within MDC and evaluate them by the cost function

$$cost = \alpha \cdot \Delta W + \beta \cdot D + \rho P_C + \sigma (1 - P_S)$$

$$P_C = \frac{Area(Ncells)}{Area(Row)} \cdot \Delta Area(cell)$$

$$P_S = \frac{\#eligible\ sites}{\#total\ sites\ in\ row}$$

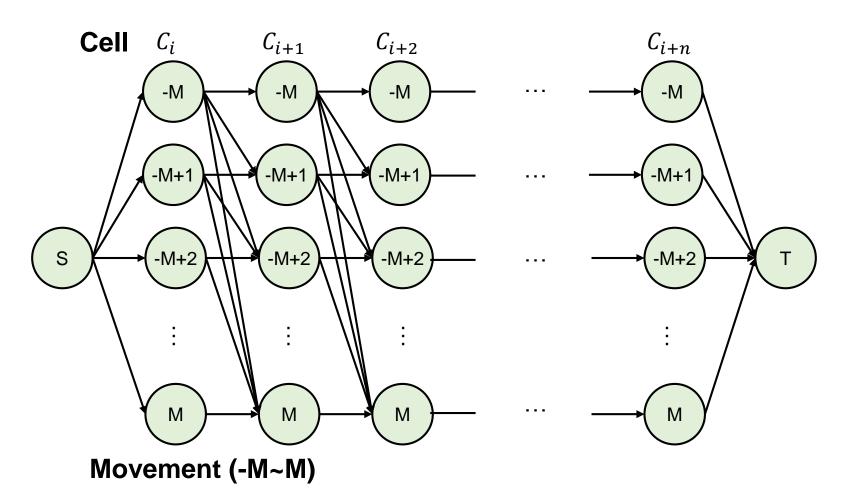
 ΔW : Wirelength improvement (or degradation)


D: Displacement

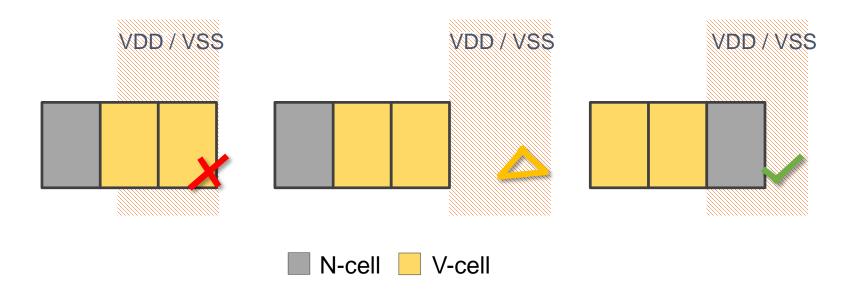
 P_C : Penalty of congested situation

 P_S : Penalty of density of eligible sites

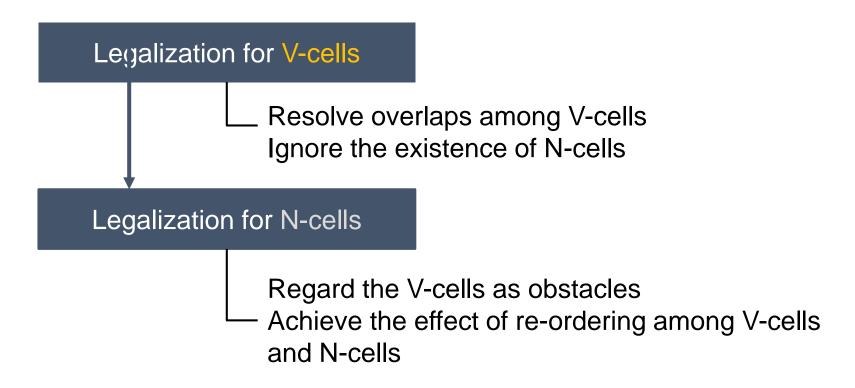
Global Move (cont'd)


- The overlaps among cells are permitted in this step
- To prevent from the sequence issue, we move a cell to a site if it is occupied by another V-cell

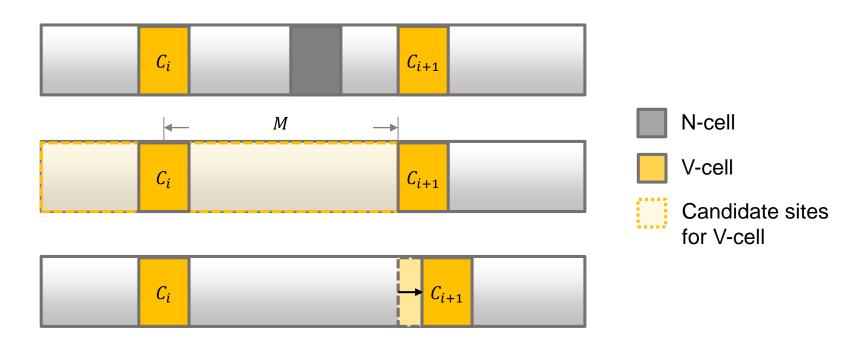
There should be no V-cell in an ineligible row after this step


DP-based Legalization Method (cont'd)

 Our legalizer is based on dynamic programming-based detailed placement algorithm [Taghavi et al., ICCAD, 2010]


DP-based Legalization Method (cont'd)

However, the order of cells among V-cells and N-cells may have to be changed to obtain a result in better quality if the PG stripes are dense or the row is congested


DP-based Legalization Method (cont'd)

 Hence, we divide legalization procedure into two-stage to achieve the effect of re-ordering

Legalization for V-cell

 In the legalization of V-cells, we ignore the existence of N-cells and only legalize for V-cells

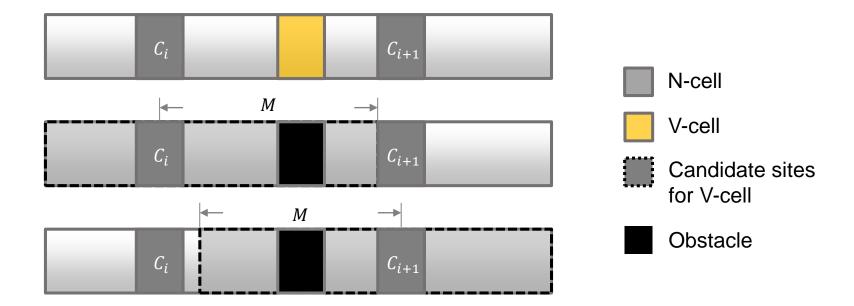
Legalization for V-cell (cont'd)

$$cost = \alpha \cdot \Delta W + \beta \cdot D + P_{M} + P_{E}$$

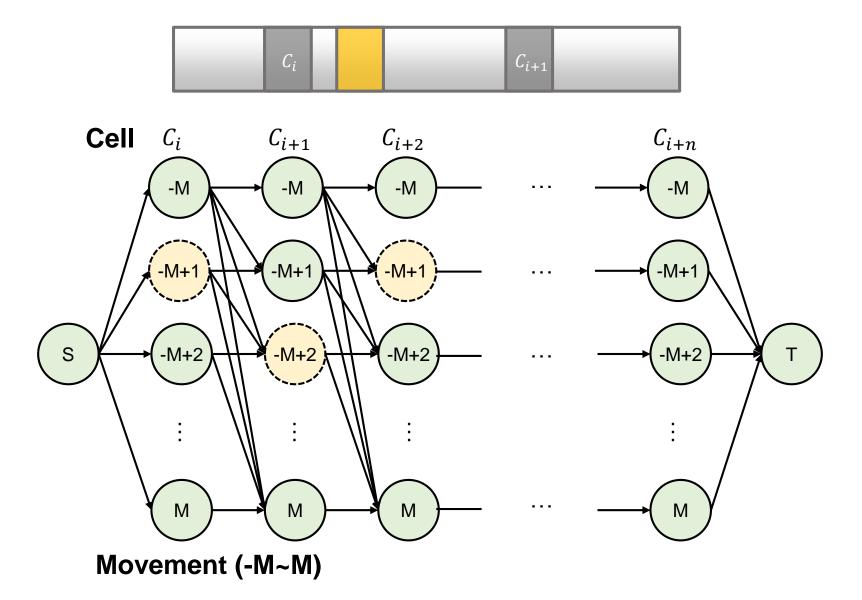
 ΔW : Wirelength improvement (or degradation)

D: Displacement

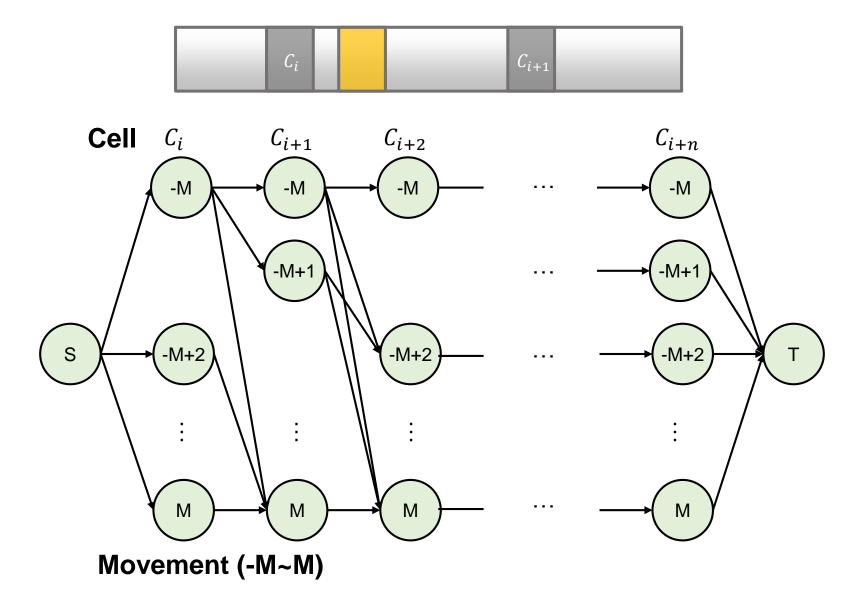
 P_M : Penalty for violation of MDC


 P_E : Penalty of eligible site alignment

$$P_{M} = \begin{cases} 0, & diplacement \ within \ MDC \\ \infty, & displacement \ beyond \ MDC \end{cases} \qquad P_{E} = \begin{cases} 0, & if \ the \ site \ is \ eligible, \\ \infty, & otherwise. \end{cases}$$


27

Legalization for N-cell


To achieve the effect of re-ordering among V-cells and N-cells, we regard the V-cells as obstacles without actually place it.

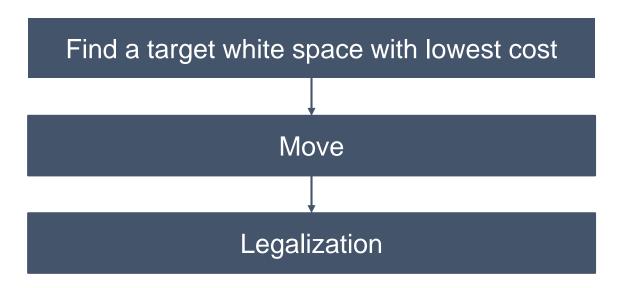
Legalization for N-cell (cont'd)

Legalization for N-cell (cont'd)

Legalization for N-cell (cont'd)

$$cost = \alpha \cdot \Delta W + \beta \cdot D + P_{M}$$

 ΔW : Wirelength improvement (or degradation)


D: Displacement

 P_M : Penalty of MDC

$$P_{M} = \begin{cases} 0, & diplacement \ within \ MDC \\ \infty, & displacement \ beyond \ MDC \end{cases}$$

Global Move For Congested Row Improvement

- After legalization, some of the rows are still remaining illegal when cells are highly congested in the rows
- We try to move the cells in a congested row to white spaces with a smallest cost within MDC

Global Move For Congested Row Improvement

$$cost = \alpha \cdot \Delta W + \beta \cdot D + \varepsilon P_V$$

 ΔW : Wirelength improvement (or degradation)

D: Displacement

 P_V : Penalty of local overlap

 $P_V = overlap \ area \ with \ adjacent \ cells$

EXPERIMENTAL RESULTS

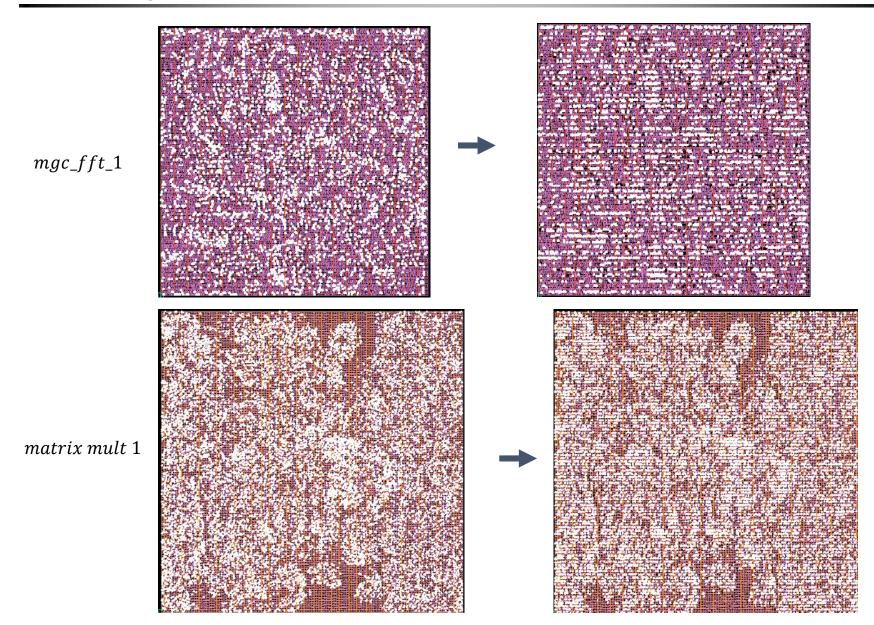
Environment Setting

- □ C++ programming language
- The results were generated on a 2.10 GHz Intel Xeon CPU E5-2620 Linux machine with 32GB memories
- Parallel processing in the eligible position determination by 24 threads
- Adopt commercial APR tool "IC Compiler 2" to perform via pillar insertion process

Benchmarks

- We integrate the real industrial 16 nm standard cell library into ISPD 2015 placement contest
- Only big-macro-free testcases were adopted
- We create a via-pillar structure which crosses from M1 to M5, with 1, 2, 2, 2 bars and 1, 1, 2, 2 cuts in M2, M3, M4, M5, respectively
- We manually lay PG stripes in each testcase

Characteristics of Benchmark Suit


Design	Cell Area (mm^2)	#Cells	#Nets
${ m mgc_fft_1}$	0.0584	32281	33307
mgc_fft_2	0.0584	32281	33307
$mgc_des_perf_1$	0.1790	112644	112878
$mgc_matrix_mult_1$	0.2427	155325	158527

Result on Testcases with PG Stripe

With PG Stripe & track alignment issue

	fft_1	fft_2	des_perf_1	matrix_mult_1	Average
#Row	192	192	348	383	***************************************
#Eligible row	96	96	174	192	
#Cell	32281	32281	112644	155325	
#V-cell	3850	3832	955	13103	***************************************
Insertion rate % (bef.)	41.26	44.28	40.31	42.56	42.1025
Insertion rate % (aft.)	99.13	99.25	99.01	99.16	99.1375
ΔInsertion rate %	57.87	54.97	58.7	56.6	57.035
HPWL(before)	5.73E+08	5.63E+08	2.84E+09	2.93E+09	***************************************
HPWL(after)	5.92E+08	5.80E+08	2.84E+09	2.98E+09	***************************************
ΔHPWL	+3.37%	+2.91%	+0.01%	+1.88%	+2.04%
Displacement	3.33E+07	3.18E+07	5.25E+07	1.10E+08	***************************************
Total movement of Vcell	1.19E+07	1.11E+07	6.24E+06	3.21E+07	***************************************
Average mov. (Row Hei.)	1.82	1.70	3.91	1.46	2.22253

Layout of Testcases with PG Stripe

Results on Testcases w/o PG Stripe

 Furthermore, we evaluate our algorithm on the testcases without impact from PG stripes

	fft_1	fft_2	des_perf_1	matrix_mult_1	Average
#Row	192	192	348	383	***************************************
#Eligible row	96	96	174	192	***************************************
#Cell	32281	32281	112644	155325	***************************************
#V-cell	3850	3832	955	13103	***************************************
Insertion rate % (bef.)	48.02	51.35	47.23	49.41	49.0025
Insertion rate % (aft.)	99.57	99.34	99.89	99.31	99.5275
ΔInsertion rate %	51.55	47.99	52.66	49.9	50.525
HPWL(before)	5.73E+08	5.63E+08	2.84E+09	2.93E+09	***************************************
HPWL(after)	5.91E+08	5.80E+08	2.82E+09	2.97E+09	***************************************
ΔHPWL	+3.30%	+2.98%	-0.69%	+1.32%	+1.73%
Displacement	4.30E+07	4.19E+07	9.85E+07	1.58E+08	******************************
Total movement of Vcell	1.18E+07	1.11E+07	6.23E+06	3.27E+07	*******************************
Average mov. (Row Hei.)	1.80	1.69	3.90	1.49	2.22

Result on Testcases w/o Track Alignment Issue

■ We evaluate our algorithm on the testcases without impact from track alignment issue

	fft_1	fft_2	des_perf_1	matrix_mult_1	Average
#Row	192	192	348	383	
#Eligible row	192	192	348	383	************************
#Cell	32281	32281	112644	155325	***************************************
#V-cell	3850	3832	955	13103	************************
Insertion rate % (bef.)	85.74	85.87	85.45	85.25	85.5775
Insertion rate % (aft.)	99.05	99.12	99.26	99.24	99.1675
ΔInsertion rate %	13.31	13.25	13.81	13.99	13.59
HPWL(before)	5.73E+08	5.63E+08	2.84E+09	2.93E+09	******************************
HPWL(after)	5.68E+08	5.58E+08	2.82E+09	2.88E+09	*************************
ΔHPWL	-0.79%	-0.97%	-0.64%	-1.56%	-1.00%
Displacement	2.39E+07	2.37E+07	8.64E+07	1.01E+08	************************
Total movement of Vcell	4.12E+06	4.24E+06	5.62E+06	1.10E+07	*************************
Average mov. (Row Hei.)	0.63	0.65	3.52	0.50	1.32

CONCLUSION

Conclusion

- We propose first placement framework considering via pillar insertibility maximization in detailed placement stage.
- We explore the possible causes of insertion failure and also verified these reasons through experiments
- □ The experimental results show that through this algorithm, even if the solution space has been reduced by PG stripes and track alignment issue, we can still achieve a solution with high insertion rate

THANKS FOR LISTENING

