

DRC Hotspot Prediction at Sub-10nm Process Nodes Using Customized Convolutional Network

Rongjian Liang¹, Hua Xiang², Diwesh Pandey², Lakshmi Reddy², Shyam Ramji², Gi-Joon Nam², Jiang Hu¹

1 Department of Electrical & Computer Engineering, Texas A&M University 2 IBM Research

Outline

- Introduction
- Previous Works
- Feature Selection
- J-Net Convolutional Network Architecture
- Results
- Conclusion

DRC Hotspot Prediction in Placement

Challenges: Pin Accessibility

Pin accessibility is an important cause of DRVs, at *sub 10 nm nodes*.

Example of pin access problem^[1]

[1] Tao-Chun Yu et al. Pin Accessibility Prediction and Optimization with Deep Learning-based Pin Pattern Recognition. DAC 2019.

High resolution pin configuration images

Low resolution tile-based feature maps

Contributions

- A general DRC hotspot prediction technique does *not rely on global routing*
- Emphasizing both *pin accessibility* and *routing congestion*
- A customized convolutional network that address the *mixed input resolution issue*

Outline

- Introduction
- Previous Works
- Feature Selection
- J-Net Convolutional Network Architecture
- Results
- Conclusion

Previous Works

FCN Zhiyao Xie et al. RouteNet: routability prediction for mixed-size designs using convolutional neural network. ICCAD 2018.

Conv(9) Pool Shortcut Trans(9) Conv(3) Ut + Trans(9) Conv(5) Ut + Trans(9) Conv(5) Ut + Trans(9) Conv(5) Ut + Trans(9) Conv(5) Ut + Trans(9) Conv(7) Ut + Trans(9) Ut + T

FCN Network

Tile-based layout feature maps

- Using global routing congestion
- Not consider pin accessibility

Previous Works

cGAN Cunxi Yu et al. Painting on Placement: Forecasting Routing Congestion using Conditional Generative Adversarial Nets. DAC 2019.

Previous Works

CNN Tao-Chun Yu et al. Pin Accessibility Prediction and Optimization with Deep Learning-based Pin Pattern Recognition. DAC 2019.

Outline

- Introduction
- Previous Works
- Feature Selection
- J-Net Convolutional Network Architecture
- Results
- Conclusion

High Resolution Pin Configuration Image

- One image for one layer
 where pins reside
- Resolution is high enough to show pin shape clearly
- 0 for empty space
 1 for pin access points

Pin configuration image

Low Resolution Tile-based Feature Maps

- Resolution is two orders lower than that of pin images
- Routing resource features: Percentage of a tile area that is occupied by IPs
- Connection features: #local nets and #global nets
- Each tile is 1.26µm * 1.26µm large

High resolution pin configuration images

Low resolution tile-based feature maps

Outline

- Introduction
- Previous Works
- Feature Selection
- J-Net Convolutional Network Architecture
- Results
- Conclusion

Background on U-Net

Multi-level U-Net architecture

Transposed convolution

Proposed J-Net

Extension of U-Net
 Handle mixed resolution input and output

J-Net architecture

Input channels of different resolutions are fed into different levels at the encoding path

The number of decoder levels is less than that of encoder

The number of convolution operations in each down-sampling/up-sampling unit is reduced from 2 to 1

Reduce parameters -> Reduce the risk of overfitting and memory usage.

Automatic tuning of kernel size

Outline

- Introduction
- Previous Works
- Feature Selection
- J-Net Convolutional Network Architecture
- Results
- Conclusion

Experiment Setup

Number of samples:

- 12 designs
- 166 placement instances
- Two training & testing schemes:
- Scheme 1 : Test on unseen placement instances
- Scheme 2 : Test on unseen designs

Testcase characteristics

Design	Chip Size (μm^2)	#IPs	#Gates	#Nets
D1	59.52×62.21	0	13569	15552
D2	59.52x×129.60	0	10796	17843
D3	211.20×391.39	0	328611	338846
D4	79.68×84.24	0	18283	25068
D5	122.88×233.28	0	68393	86640
D6	122.88×95.90	0	46001	49337
D7	138.24×80.35	0	35627	38456
D8	284.16×95.90	0	100566	108187
D9	76.80×401.76	1	52659	70338
D10	249.60×316.22	3	149456	191513
D11	280.32×489.89	16	81384	105678
D12	253.44×671.33	28	200454	247271

Data augmentation: Cropping

Data augmentation: Random Flipping

		П			
╏┍┹┹	H	╫			
ĽФ					
[4	Ц	-44	╄┚		
ש		Ш	ĽĽ		
		Щ		┓┖┻╢	

	┺╋	₩
4	╉╋╼	h
╵┕┱┰┲╼┙┍┪	₩	"\
	İΠ	

Щ		
L.	┡╼╁┶┽	
┢╋┹	┝┯┻┯╇┙	

Π				L
П			П	
	F	H	T.	<u>ן</u>
	Ηr			

Scheme 1: Comparison of Features

- ROC: Receiver Operating Characteristic, tradeoff between TPR (True Positive Rate) and FPR (False Positive Rate)
- H: Pin configuration images
- R: Routing resource feature
- Cn: Connection features
- Cg: GR congestion map
- D: density features such as logic gate pin density, clock pin density, logic cell density, filler cell density, etc

Scheme 1: Comparison of Various Methods

	Extension of previous works			Plug-in use of existing model	Customized model
Metric	FCN	cGAN	CNN	U-Net	J-Net
AUC of ROC	0.867	0.818	0.927	0.913	0.958
FPR	9.0%	9.9%	9.5%	9.6%	9.8%
TPR	56.5%	51.7%	79.2%	72.9%	93.0%
Precision	35.1%	31.9%	42.9%	40.6%	46.2%
F1-score	43.3%	39.5%	55.7%	52.2%	61.8%
Global routing?	Υ	Ν	Ν	Ν	Ν

AUC: Area Under Curve (ideally 1.0) Precision = TP/(FP + TP)

F1 = 2TP/(2TP+FP+FN)

Scheme 2: Comparison of Features

- AUC: Area Under Curve of Receiver Operating Characteristic, ideally 1.0
- H: Pin configuration images
- R: Routing resource feature
- Cn: Connection features
- Cg: GR congestion map
- D: density features such as logic gate pin density, clock pin density, logic cell density, filler cell density, etc

Scheme 2 : Comparison of Various Methods

	Extension of previous works			Plug-in use of existing model	Customized model
Metric	FCN	cGAN	CNN	U-Net	J-Net
AUC of ROC	0.788	0.714	0.871	0.854	0.913
FPR	9.1%	9.7%	9.4%	9.47%	8.90%
TPR	41.0%	38.1%	71.4%	56.1%	78.5%
Precision	31.3%	29.9%	43.9%	35.8%	46.2%
F1-score	32.3%	29.9%	49.4%	39.3%	54.0%

AUC: Area Under Curve (ideally 1.0) Precision = TP/(FP + TP) F1 =

F1 = 2TP/(2TP+FP+FN)

Runtime

- Global routing: several hours for one layout design
- J-Net Training: ~ 27 hours , can be reused across different designs
- J-Net Inference: < 1 *minute* for one layout design

Outline

- Introduction
- Previous Works
- Feature Selection
- J-Net Convolutional Network Architecture
- Results
- Conclusion

Conclusion

- A general DRC hotspot prediction technique that does not rely on global routing
- A customized convolutional network that address the *mixed resolution issue*
- Above 7% higher TPR, at the same FPR, than extensions of previous works

Thank you!

