A Polynomial Time Exact Algorithm for Self-Aligned Double Patterning Layout Decomposition

Zigang Xiao

ISPD ’12, Napa, CA
March 26, 2012
Outline

• Introduction
 – Background
 – SADP Process
 – Avoiding overlay in SADP

• Problem Formulation

• A Polynomial-time Exact Algorithm

• Experimental Results

• Summary
Background

- Single exposure lithography reaches its limit.
 - Double Patterning Lithography (DPL) is necessary.
- Problem of LELE DPL: **overlay**
 - Mask-to-mask misalignment
 - Ruin the process reliability, lead to yield degradation.
- Self-aligned Double Patterning (SADP) can **avoid** overlay.
 - Two mask phases: **core** mask, **trim** mask.

![Diagram](attach:overlay_in_traditional_dpl.png)

- Too close:
 - Cannot print in a single mask
- Overlay in traditional DPL
SADP Process

Patterns printed = trim & not sidewall
Avoiding Overlay in SADP

possible edge location of trim pattern after misalignment

W_o Maximum amount of trim mask misalignment

W_s Sidewall width

- Sidewall is providing protection for feature edges
- No overlay requirement: the boundaries of features must be **protected by sidewall**
 - Referred as **Ring of Sidewall**
SADP Process – Multiple Features

Patterns printed = \text{trim} \& \text{not sidewall}

- Target Features
- Core
- Sidewall
- Trim

Features too close

Note: no matching core patterns
Problem Formulation

• Given a set of features, find a set of core patterns and trim patterns that can produce the features exactly without overlay.
 – Refer the solution as a decomposition.
• Process rules must not be violated
 – Minimum pattern distance d_{min}
 – Minimum pattern width w_{min}

\[width \geq w_{min} \]
\[d \geq d_{min} \]
Previous Works

• Minimization of overlay
• SAT [Zhang et al., SPIE Optical Lithography ’11]
• ILP [Zhang et al. DAC ’11]
 – Exact, but exponential time
• Graph approach [Ban et al. SPIE DFM through Design-Process Integration ’11, DAC ’11]
 – Not optimal

• Proposed algorithm
 – No-overlay solution
 – Polynomial time and exact
Outline

• Introduction
• Problem Formulation
• A Polynomial-time Exact Algorithm
 – Auxiliary core
 – Graph formulation
 – Details of the algorithm
• Experimental Results
• Summary
Auxiliary Cores

- Assume $d_{min} = w_{min} = 40nm$, $w_s = 30nm$, $w_o = 10nm$.
- d: distance between two features
- When $d < 30nm$, no solution (no sidewall possible).
- When $d \geq 40nm$, can use core patterns simultaneously:

![Diagram showing two cores with distance $d = 70nm$]
Auxiliary Cores – cont.

• When $d = 30 \text{nm}$, cannot use two core patterns, use auxiliary cores to generate sidewalls.
 • Important way to *avoid overlay*!
• How about $30 < d < 40$?
• Use two trim patterns: impossible (too close)
• Use one trim pattern: feature B is widened
• Cannot decompose when $30 < d < 40$
Summary

• Distance requirement for d
 – $d = 30 \ (d_{\text{min}})$ or $d \geq 40 \ (w_{\text{min}})$
 – No solution if $w_s < d < d_{\text{min}}$
A Graph Formulation

• We can reflect the distance constraints in a graph.

• Define SW-Graph $G=(V,E)$:
 – V: include a vertex in V for every feature.
 – E: add an edge if i and j has distance $d=w_s$.
 • If $w_s < d < d_{min}$, no solution.
A Graph Formulation – cont.

- We can use **two-coloring** to find a set of core patterns that can be printed **simultaneously** in core mask.
 - Call the two colors as ‘core’ and ‘space’.
 - Assign ‘core’ to feature A ↔ Put a core pattern at A
 - Assign ‘space’ to feature B ↔ leave B as blank
A Graph Formulation – cont.

- Two-colorability of SW-Graph is only a necessary condition: only features assigned ‘core’ have sidewalls, need a way to generate other required sidewalls.

- Note: LELE is solved by using two-coloring to assign colors (mask 1 or 2) to features
 - Two-coloring is not enough for our problem
 - The graph definitions are different
1. Find decompositions for each connected component in G.
2. Obtain a final decomposition from decompositions of connected components.
Step I: Decomposition for Component

• Note: Given a two-coloring solution of a connected component, different decompositions may exist.

- Use ring of auxiliary core approach:
 - Remove conflict minimally
 - Merge when necessary

- Contains all possible auxiliary core settings.
- Referred as a *standard* decomposition.
Step I: Decomposition for Component

• Consequence
 – There are **two** two-coloring solutions for a colorable connected component.
 – A standard decomposition may not always exist.

• **At most** two standard decompositions for each component.

Decompositions for components \{A, B\}… and \{C, D\}
Step II: Combining Decompositions

• After step I, now we have decompositions for each connected component
 – \{d_{11}, d_{12}\}, \{d_{21}, d_{22}\}, ..., \{d_{n1}, d_{n2}\}

• Want to find a set of compatible decompositions from each connected component and combine them as a complete decomposition.
 – These decompositions must not introduce overlay.

• Two decompositions are compatible, if combining them will not introduce overlay.
• Otherwise, they are incompatible.
Example: Incompatible Decompositions
Example: Compatible Decompositions

All features are surrounded by sidewall - no overlay
Step II: Combining Decompositions - cont.

- Problem: find a decomposition d_i from each component i and combine them as a final decomposition.
 - d_i and d_j must be compatible for all $i \neq j$.

- There may be $O(n)$ components in G (n: # features).
- Each component have at most two decompositions.
- $O(2^n)$ combinations!
- How to find a set of compatible combinations efficiently?

- It turns out this can be formulated as 2SAT problem and can thus solved efficiently.
Step II: Combining Decompositions - cont.

- Construct a Boolean disjunction f as follows:
 - Denote the two solutions of component i as x_i and $\neg x_i$. Either of them may not exist (no decomposition for coloring).
 - Let l be a literal (e.g., $\neg x_i$). If l does not exist, $f \leftarrow f \lor l$
 - If two solutions l_i and l_j from components i and j are not compatible, $f \leftarrow f \lor (l_i \land l_j)$. E.g., $x_i \land \neg x_j$.
 - At most $O(n^2)$ conjunctions, i.e., quadratic.

- Let $g = \neg f$, then a satisfiable assignment of g is a final compatible decomposition.
 - $g = true \iff f = false \iff$ all terms in f are false \iff no conjunction is true \iff no incompatible decompositions appear together

- g is in 2CNF: 2SAT in 2CNF can be solved efficiently in linear time (Aspvall, Plass & Tarjan 1979).
Solution to the Example

• Based on *implication graph* and its *strongly connected component* (Aspvall, Plass & Tarjan 1979)

- $f= (x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (\neg x_1 \land \neg x_2) \lor (x_2 \land x_3) \lor (\neg x_2 \land \neg x_3)$

- $g= (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3)$

• A satisfiable assignment: $\neg x_1, x_2, \neg x_3$
A Final Complete Decomposition

Core patterns obtained by combining $\neg x_1, x_2, \neg x_3$
Extension

- Allow overlay on non-critical edge

- Generalized, relaxed version
- Our algorithm can be modified to optimally solve this problem
 - Sidewall along critical edge
Experimental Results

<table>
<thead>
<tr>
<th>Name</th>
<th># Features</th>
<th># Components</th>
<th>CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ours</td>
<td>ILP [1]</td>
<td></td>
</tr>
<tr>
<td>INV_X1</td>
<td>4</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>BUF_X1</td>
<td>5</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>BUF_X16</td>
<td>5</td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>NAND2_X1</td>
<td>5</td>
<td>3</td>
<td>0.16</td>
</tr>
<tr>
<td>AND2_X1</td>
<td>6</td>
<td>2</td>
<td>0.07</td>
</tr>
<tr>
<td>OR2_X1</td>
<td>6</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>OR4_X4</td>
<td>8</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
</tbody>
</table>

- Implemented in C++. Run on 3.20 GHz CPU w/ 32GB memory. Achieves ~100X Speed up.

[1] Zhang et al. Self-Aligned Double Patterning Decomposition for Overlay Minimization and Hot Spot Detection. DAC 2010
Example
Summary

• A polynomial-time exact algorithm for SADP decomposition on general 2D layout.
 – A correct graph formulation
 – Computes a decomposition without overlay efficiently.

• Experimental results demonstrate the efficiency of the proposed algorithm.
Thank you!