DESIGN

DAC 2012 Contest Routability-Driven Placement

http://archive.sigda.org/dac2012/contest/dac2012_contest.html

Contest Evaluation

Natarajan Viswanathan
IBM Corporation, Austin, TX
(nviswan@us.ibm.com)

Contest Flow and Evaluation

Definition of Congestion

Global Routing Grid Graph

> Global Routing Grid Cell (g-cell)

Global Routing Graph Edge (g-edge)

For a g-edge (e) on a particular metal layer:

- $\mathrm{c}_{\mathrm{e}} \quad$: Total or maximal capacity of edge e
- $b_{e} \quad$: Routing blockage on edge e
- $\mathrm{w}_{\mathrm{e}} \quad$: Routing demand on edge e

Congestion of g-edge e (in percent)
$\left.=100 *\left(\mathbf{w}_{\mathrm{e}}+\mathrm{b}_{\mathrm{e}}\right) / \mathrm{c}_{\mathrm{e}}\right)$

Congestion Metric

\square Based on the histogram of g-edge congestion
\square ACE (x)

- Average Congestion of the top $\mathrm{x} \%$ congested g-edges (across all layers)
■ $x \in\{0.5,1,2,5\}$

Contest Metric Excluding Runtime

Peak_Weighted_Congestion (PWC):
$\operatorname{PWC}=\frac{\mathrm{k}_{1} * \operatorname{ACE}(0.5)+\mathrm{k}_{2} * \operatorname{ACE}(1)+\mathrm{k}_{3} * \operatorname{ACE}(2)+\mathrm{k}_{4} * \operatorname{ACE}(5)}{\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}}$
Routing_Congestion (RC):
RC $=\operatorname{MAX}(100, \mathrm{PWC})$

Contest Evaluation Metric $=$ Scaled Wire Length $=H P W L *(1+P F *(R C-100))$

Constants

- $\quad \mathrm{K}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}=1.0$ (subject to change)
$\square \quad \mathrm{PF}=0.03$ (subject to change)
Interpretation of the metric:
For every 1\% excess Routing_Congestion (> 100\%),
there is a 3% wire length penalty

Runtime Factor

\square For each design, measure wall times for all placers
$\square \quad$ Normalized Runtime = Placer_Wall_Time / Median_Wall_Time
\square Runtime Factor:

$\square \quad \pm 4 \%$ advantage for a 2 X speed-up/slow-down
\square Maximum runtime factor set to 10%

Final Quality Metric

Scaled Wire length considering congestion and runtime:

HPWL * ($1+$ PF* $^{*}($ RC -100$)$) * ($1+$ Runtime_Factor $)$

