

DAC 2012 Contest Routability-Driven Placement

http://archive.sigda.org/dac2012/contest/dac2012_contest.html

Contest Evaluation

Natarajan Viswanathan IBM Corporation, Austin, TX (nviswan@us.ibm.com)

Contest Flow and Evaluation

Definition of Congestion

For a g-edge (e) on a particular metal layer:

- c_e : Total or maximal capacity of edge e
- b_e : Routing blockage on edge e
- w_e : Routing demand on edge e

Congestion of g-edge e (in percent) = 100 * ($(w_e + b_e) / c_e$)

Congestion Metric

- Based on the histogram of g-edge congestion
- \Box ACE(x)
 - Average Congestion of the top x% congested g-edges (across all layers)

Contest Metric Excluding Runtime

Peak_Weighted_Congestion (PWC): PWC = $\frac{k_1 * ACE(0.5) + k_2 * ACE(1) + k_3 * ACE(2) + k_4 * ACE(5)}{k_1 + k_2 + k_3 + k_4}$

Routing_Congestion (RC):

RC = MAX(100, PWC)

Contest Evaluation Metric = Scaled Wire Length = HPWL * (1 + PF*(RC - 100))

Constants

 $K_1 = k_2 = k_3 = k_4 = 1.0$ (subject to change) PF = 0.03 (subject to change)

Interpretation of the metric:

For every 1% excess Routing_Congestion (> 100%), there is a 3% wire length penalty

Runtime Factor

- □ For each design, measure wall times for all placers
- Normalized Runtime = Placer_Wall_Time / Median_Wall_Time
 Runtime Factor:

- □ ±4% advantage for a 2X speed-up/slow-down
- □ Maximum runtime factor set to 10%

Scaled Wire length considering congestion and runtime:

HPWL * $(1 + PF*(RC - 100)) * (1 + Runtime_Factor)$