
DAC 2012 Contest

Routability-Driven Placement

http://archive.sigda.org/dac2012/contest/dac2012_contest.html

Benchmark Description

Natarajan Viswanathan

IBM Corporation, Austin, TX

(nviswan@us.ibm.com)

2

Highlights

 Real industrial ASIC designs

 Information for placement and
routing

 Design-density: 25% - 65%

 Placement blockages leading
to a fragmented image space

 Routing blockages

 More metal layers with varying
metal width and spacing
across layers

3

Outline

 Benchmark File Format Description

 Special Features for Placement and Routing

 Utility Scripts

4

Benchmark File Format Description

5

Overview of Benchmark Files (1)

 Extend the Bookshelf format with information
to perform placement and routing

 Each benchmark circuit will comprise of the following files

 circuit.aux

 circuit.nodes

 circuit.nets

 circuit.wts

 circuit.pl

 circuit.scl

 circuit.shapes

 circuit.route

Original Files in Bookshelf
format with some extensions

New Files with extensions for
both placement and routing

6

Overview of Benchmark Files (2)

 The output/solution of the placer should
have the same format as the circuit.pl file

 Hence, placement output/solution file

 <placement_solution>.pl

 For additional information:

 http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/

plFormats.html

 http://archive.sigda.org/ispd2008/contests/ispd08rc.html

7

circuit.aux

 Auxiliary file listing all the files that describe/specify
the benchmark

 The placer/router should parse the files listed in the
“circuit.aux” file to get the benchmark information

 Single line giving all the file names

RowBasedPlacement : circuit.nodes circuit.nets

circuit.wts circuit.pl circuit.scl circuit.shapes

circuit.route

8

circuit.nodes (1)

 Specifies the node (object) name, dimensions
(width and height) and movetype

 The nodes can have one of three movetypes

 movable: Movable Node – the placer needs
to obtain the locations of these nodes.

 terminal: Fixed Node – the placer cannot move
these nodes. Also, there should be no overlap
between a movable and terminal node.

 terminal_NI: Fixed “Not in Image” Node – the
placer cannot move these nodes, but overlap is
allowed with a terminal_NI node.
(detailed description under special features)

9

circuit.nodes (2)

 NumNodes : Total number of nodes (movable + fixed)

 NumTerminals : Number of terminal (fixed) nodes

 NumTerminals = #terminal + #terminal_NI

 For each node:
node_name width height movetype

 If a line does not specify a movetype, the associated
node is a movable node

 UCLA nodes 1.0

File header with version information, etc.

Anything following “#” is a comment, and should be ignored

NumNodes : 5

NumTerminals : 2

 o0 4 9 # movable node

 o1 6 9

 o2 24 9

 o3 414 2007 terminal # terminal node (fixed node)

 p0 1 1 terminal_NI # terminal_NI node (fixed node, but

 overlap is allowed with this node)

10

circuit.nets (1)

 Specifies the circuit netlist – the set of nets
or connections in the hypergraph

 Each net specification lists the pins that
belong to the net

 A pin is specified by

 The corresponding node

 The offset of the pin with respect to the
center of the node

 For wirelength driven placement, the pin direction
can be ignored

11

circuit.nets (2)

 NumNets : Total number of nets in the circuit

 NumPins : Total number of pins in the netlist

 For each net:

NetDegree : number_of_pins_on_this_net [net_name]

 node_name pin_direction : pin_Xoffset pin_Yoffset

 Pin offsets are from the center of the node

UCLA nets 1.0

File header with version information, etc.

Anything following “#” is a comment, and should be ignored

NumNets : 2

NumPins : 6

NetDegree : 3 n0

 o0 I : 0.0000 -1.5000

 o1 I : -2.5000 0.5000

 p1 O : 0.0000 0.0000

NetDegree : 3 n1

 o0 O : 1.5000 3.0000

 o3 O : 10.5000 -27.0000

 o2 I : -1.0000 0.5000

12

circuit.pl (1)

 Gives the coordinates (x,y) and orientation for
each node

 The coordinates for all movable nodes will be
(0,0) or undefined

 The placer should parse this file to obtain the
coordinates for all the fixed nodes

 The default orientation is “vertical and face up” –
N (North)

 NOTE: The output/solution of the placer should
have the same format as the “circuit.pl” file

13

circuit.pl (2)

 For each node:

 node_name lowerleft_Xcoordinate lowerleft_Ycoordinate

 : orientation movetype

 Orientation of all the nodes will always be N (default)

 No flipping / mirroring / rotation of the nodes is allowed

 Use pin offsets directly as specified in the .nets file

UCLA pl 1.0

File header with version information, etc.

Anything following “#” is a comment, and should be ignored

node_name ll_Xcoord ll_Ycoord orientation movetype

 o0 0 0 : N

 o1 0 0 : N

 o2 0 0 : N

 o3 7831 7452 : N /FIXED

 p0 1215 7047 : N /FIXED_NI

14

circuit.scl (1)

 Specifies the placement image (individual circuit rows
for standard-cell placement)

 Refer to the next slide for file format and definitions

NumRows=2; Sitespacing=1

Height=9

NumSites=6

NumSites=4

Y=18 (Coordinate)
X=18 (SubrowOrigin)

Y=27 (Coordinate)
X=20 (SubrowOrigin)

Y=18
X=24

Y=36
X=24

(Row 1)

(Row 2)

15

circuit.scl (2)

 NumRows : Number of circuit rows for placement

 CoreRow – Horizontal circuit row followed by the row specification

 Coordinate : Y-coordinate of the bottom edge of the circuit row

 Height : Circuit row height (= standard-cell height)

 Sitespacing : Absolute distance between neighboring placement sites in a row

 SubrowOrigin : X-coordinate of the left edge of the subrow

 NumSites : Number of placement sites in this subrow

 Hence, X-coordinate of the right edge of the subrow =

 SubrowOrigin + NumSites*Sitespacing

UCLA scl 1.0

File header with version information, etc.

NumRows : 1

CoreRow Horizontal

 Coordinate : 18

 Height : 9

 Sitewidth : 1 # optional: equal to Sitespacing

 Sitespacing : 1

 Siteorient : N # optional: can be ignored

 Sitesymmetry : Y # optional: can be ignored

 SubrowOrigin : 18 NumSites : 11605

End

16

circuit.shapes

 Specifies the component shapes for non-rectangular nodes

(detailed description of non-rectangular nodes under special features)

 Any node not in this file is a regular rectangular node

 NumNonRectangularNodes : Number of non-rectangular nodes

 For each non-rectangular node:
node_name : number_of_component_shapes

 shape_id lowerleft_Xcoord lowerleft_Ycoord width height

shapes 1.0

File header with version information, etc.

NumNonRectangularNodes : 2

o25 : 3 # Non-rectangular node with three component shapes

 Shape_0 10 0 90 40

 Shape_1 0 40 100 10

 Shape_2 10 50 90 50

o32 : 4

 Shape_0 30 2259 963 9

 Shape_1 30 2268 1024 9

 Shape_2 30 2277 1024 9

 Shape_3 30 2286 963 9

17

circuit.route (1)

 Specifies information to perform global routing

 Example below specifies an instance with 9 metal layers

route 1.0

File header with version information, etc.

Grid : 304 403 9

VerticalCapacity : 0 80 0 80 0 80 0 80 0

HorizontalCapacity : 0 0 80 0 80 0 80 0 80

MinWireWidth : 1 1 1 1 2 2 2 4 4

MinWireSpacing : 1 1 1 1 2 2 2 4 4

ViaSpacing : 0 0 0 0 0 0 0 0 0

GridOrigin : 18 18

TileSize : 40 40

BlockagePorosity : 0

NumNiTerminals : 2

 p0 4 # All the pins belonging to nodes p0/p1 are on

 p1 4 metal layer 4 for routing

NumBlockageNodes : 2

 o44 4 1 2 3 4 # o44/o2407 block 4 metal layers within all the routing

o2407 4 1 2 3 4 tiles that they overlap. These are layers 1,2,3,4.

 Header Section

 Terminal_NI Section

 Blockage Section

18

circuit.route (2)

 9 metal layers

 M1-M4

 1x width and spacing

 M5-M7

 2x width and spacing

 M8-M9

 4x width and spacing

Metal Stack for example in previous slide

19

circuit.route (3)

 Similar to the ISPD 2008 routing contest format
 http://archive.sigda.org/ispd2008/contests/ispd08rc.html

 Header Section

- Grid : Global routing grid

 (num_X_grids num_Y_grids num_layers)

- VerticalCapacity : Vertical capacity per tile edge on each layer

- HorizontalCapacity : Horizontal capacity per tile edge on each layer

 (Preferred routing directions are indicated by a

 non-zero capacity value in that direction)

- MinWireWidth : Minimum metal width on each layer

- MinWireSpacing : Minimum spacing on each layer

- ViaSpacing : Via spacing per layer

- GridOrigin : Absolute coordinates of the origin of the grid

 (grid_lowerleft_X grid_lowerleft_Y)

- TileSize : tile_width tile_height

- BlockagePorosity : Porosity for routing blockages

 (Zero implies the blockage completely blocks
 overlapping routing tracks. Default = 0).

20

circuit.route (4)

 Terminal_NI section

 NumNiTerminals : Number of terminal_NI nodes

 For each node:

node_name layer_id_for_all_node_pins

 Blockage Section

 NumBlockageNodes : Number of blockage nodes

 For each blockage:

node_name num_blocked_layers list_of_blocked_layers

 The tiles overlapping with a blockage can be determined
using placement information from the other files in the
benchmark

21

Number of routing tracks per tile edge

How to determine the total number of routing tracks per tile edge?

The benchmark format follows the convention laid out in the ISPD 2008 routing
contest. Essentially, for each tile edge, the "VerticalCapacity" or "HorizontalCapacity“
values per layer give a measure of the total available space per tile edge. They are
not the total number of global routing tracks per tile edge.

Hence, if the capacity for a particular layer is 80, and the minimum wire width and
spacing are both 1, this corresponds to 80 / (1+1) = 40 minimum width tracks per
tile edge.

For the following configuration:

 VerticalCapacity : 0 80 0 80 0 80 0 80 0

HorizontalCapacity : 0 0 80 0 80 0 80 0 80

MinWireWidth : 1 1 1 1 2 2 2 4 4

MinWireSpacing : 1 1 1 1 2 2 2 4 4

Number of global routing tracks per tile edge:
M1: 0/(1+1) = 0

M2-M4: 80/(1+1) = 40 (for whichever capacity is not zero)

M5-M7: 80/(2+2) = 20 (for whichever capacity is not zero)

M8-M9: 80/(4+4) = 10 (for whichever capacity is not zero)

22

Example Routing Blockage Map

 The method to construct a routing blockage
map for a particular layer is given below

 Routing Blockage

Max H routing tracks : 40
Max V routing tracks : 40
Tile Width : 50 units
Tile Height : 50 units

Values in Red are the actual
capacities in tracks of the edges

30 units

25 units

40

16

20

 0 40

16

 0

 0

 0 0

 0

20

 0 0

 0 0
16

 40

50 units

50 units

23

circuit.wts

 Currently unused

 All nets have the same net-weight

24

Special Features for
Placement and Routing

25

Non-rectangular Fixed Nodes (1)

 A subset of the fixed nodes in the design are not rectangular

 This affects placement density, routing capacity, etc.

 Non-rectangular nodes are represented as:

 Enclosing rectangle – blue box in Fig. (b)

 Set of rectangular component shapes – red hatched boxes in Fig. (b)

(100,100)

(100,40)

(100,50)

(Shape_1)

(Shape_2)

(10,0)

(0,40)

(10,50)

(0,0)

(100,100)

(Shape_0)

Fig (a): Non-rectangular node Fig (b): Benchmark representation

26

Non-rectangular Fixed Nodes (2)

Bookshelf Representation:

• circuit.nodes gives the dimensions of the enclosing rectangle
• circuit.pl gives the lower-left coordinate of the enclosing rectangle
• circuit.shapes gives the component shape definitions for the non-rectangular node
• circuit.nets gives the pin-offsets from the center of the enclosing rectangle

== circuit.nodes ==

#node_name width height movetype

 o25 100 100 terminal

== circuit.pl ==

#node_name llx lly : orient movetype

 o25 0 0 : N /FIXED

== circuit.shapes ==

#node_name : NumComponentShapes

#Shape_id llx lly width height

o25 : 3

 Shape_0 10 0 90 40

 Shape_1 0 40 100 10

 Shape_2 10 50 90 50 Blue: Enclosing rectangle of non-rectangular node
Red: Set of component shapes (3 in number)

(100,100)

(100,40)

(100,50)

(Shape_1)

(Shape_2)

(10,0)

(0,40)

(10,50)

(0,0)

(100,100)

(Shape_0)

27

RLM Pins and Terminal_NI Nodes (1)

 RLM Pins
 RLM pins are fixed pins that reside on a metal layer

above the metal layer(s) used within a standard-cell
for its pins or internal routing

 All the RLM pins are associated with terminal_NI nodes

 For placement, the terminal_NI nodes are:
 Fixed

 Appear to reside “above” the placement image

 In other words, standard-cells can be placed “below”
the terminal_NI nodes without resulting in an overlap

 For routing, all pin(s) associated with the terminal_NI
nodes will reside on a metal layer above M2

28

RLM Pins and Terminal_NI Nodes (2)

Placement
Image

Standard-cell

Terminal_NI
Nodes

RLM Pins

29

== circuit.nodes ==

#node_name width height movetype

 p25 1 1 terminal_NI

== circuit.pl ==

#node_name llx lly : orientation movetype

 p25 30 30 : N /FIXED_NI

== circuit.route ==

NumNiTerminals : Number_of_Terminal_NI_Nodes

#List of nodes with metal layer for ALL the pins on the node

#node_name Layer_ID

 p25 3 # All the pins on node p25 reside on M3

Bookshelf Representation :

Placement:
• Movetype terminal_NI in circuit.nodes file (overlap is allowed with this node)
• Represented as FIXED_NI in circuit.pl file

Routing:
• Terminal_NI section in circuit.route file gives the metal layer for all the pins on such nodes
• The pins for any node not given in this section of circuit.route will be on layer M1

RLM Pins and Terminal_NI Nodes (3)

30

Utility Scripts

31

Script: dac2012_check_legality

 Perl script to check the legality of the placement solution

 Usage:
 dac2012_check_legality <circuit.aux> <solution.pl>

 This script checks the following conditions:
 ERROR_TYPE 0: did a terminal or terminal_NI node

 move?
 ERROR_TYPE 1: is a movable node placed outside the

 placement area?
 ERROR_TYPE 2: is a movable node aligned to the

 circuit rows?
 ERROR_TYPE 3: is a movable node placed on a

 multiple of Sitespacing?
 ERROR_TYPE 4: are there any overlaps among the

 nodes (movable and/or fixed)?

 Can serve as a guideline to parse the benchmark files

32

Script: dac2012_get_hpwl

 Perl script to get the Half-Perimeter Wire Length
(HPWL) of the placement solution

 Usage:
 dac2012_get_hpwl <circuit.aux> <solution.pl>

 Can serve as a guideline to parse the circuit.nets
file and determine pin positions, etc.

