
Interval Arithmetic Based Input Vector Control for
RTL Subthreshold Leakage Minimization

Shilpa Pendyala and Srinivas Katkoori
Computer Science & Engineering

University of South Florida, Tampa, Florida 33620
Email: spendya2@mail.usf.edu, katkoori@cse.usf.edu

Abstract—Applying appropriate minimum leakage vector
(MLV) to each RTL module instance results in a low leakage
state with significant area overhead. For each RTL module, via
Monte Carlo simulation, we identify a set of MLV intervals such
that maximum leakage is within (say) 10% of the lowest known
leakage. We can reduce area overhead by choosing PI MLVs such
that resultant inputs to internal nodes are also MLVs. Otherwise,
control points can be inserted. Based on interval arithmetic, given
a DFG, we propose a heuristic for Primary Input (PI) MLV
identification with minimal control points. Experimental results
for DSP filters implemented in 16nm technology are promising.

I. INTRODUCTION AND MOTIVATION

Digital CMOS circuits implemented in deep-submicron
technology nodes can consume subthreshold leakage power
that is 50% or more of the total power consumption [1].
Therefore, subthreshold leakage optimization is an active
research area with several techniques reported in the literature
[2], [3], [4], [5], [6], [7], [8], [9], [10]. Of these techniques,
Input Vector Control (IVC) is attractive due to it’s low latency
overhead. In this work, we report a Register Transfer Level
(RTL) leakage minimization approach where in given the data-
flow-graph representation we identify low leakage vector using
interval arithmetic.

Subthreshold leakage is a strong function of current input
vector applied to a digital CMOS circuit [11]. Therefore,
under idle conditions the circuit can be put in a low leakage
mode by applying a minimum leakage vector (MLV). Once
the circuit becomes active, it can readily process the new
input vectors without any latency overhead. Several MLV
identification algorithms [6], [7], [12] have been proposed at
the logic-level.

A straightforward way for input vector control at RTL is
to apply appropriate minimum leakage vector (MLV) to each
RTL module instance thus resulting in a low leakage state.
However this requires significant area and control overhead.
The additional area is in terms of multiplexors at the inputs
of the RTL modules using which we select MLV.

In this work, we propose an interval arithmetic based input
vector control for RTL leakage minimization with very little
area overhead. We characterize each module in the library
(Section III-C) for leakage power based on two-phased Monte-
Carlo simulation. We identify a set of low Leakage data
intervals such that maximum leakage is within (say) 10% of
the lowest known leakage. We can reduce area overhead by
choosing PI MLVs such that resultant inputs to internal nodes
are also MLVs. Otherwise, control points can be inserted.

We report experimental results for five datapath-intensive
benchmarks implemented in 16nm technology (PTM Model

[13]). On average, we obtain 74.4% leakage savings, 59%
dynamic power savings, and 70% total power savings. These
savings are obtained at the expense of only 1.9% area over-
head.

The rest of the paper is organized as follows: Section II
presents background, related work, and terminology. Section
III describes the proposed approach. Section IV reports exper-
imental results. Finally, Section V draws conclusions.

II. BACKGROUND, RELATED WORK, AND TERMINOLOGY

We will first give a brief overview of the subthreshold
leakage minimization techniques. As this work is related to
input vector control technqiue, we will survey IVC techniques
reported in the literature. After providing a brief overview
of interval arithmetic, we establish the terminology used
throughout this paper.

A. Subthreshold leakage minimization

Subthreshold leakage control can be in standby mode or
active mode. Standby techniques include Multi Threshold
CMOS (MTCMOS), Power gating, and Super Cutoff CMOS
(SCCMOS). Active mode leakage control techniques include
input vector control, force stacking, sleepy stack, and power
gating with stacking.

Standby techniques – MTCMOS [2] and Power gating [4]
involve disconnecting supply voltage and/or ground to the
circuit through sleep transistors which need to be appropriately
sized to reduce delay penalty (in active mode) and wake-up
time (to restore circuit to active mode). Thus, these techniques
incur both area and delay overheads. In Power gating, both
sleep and logic transistors have low threshold voltage, while
in MTCMOS, the sleep transistors are high Vt. In SCCMOS
style [14], the sleep transistor is driven into super cutoff
mode resulting in an order of magnitude leakage reduction in
sleep transistor. These savings are at the expense of complex
controller design and large delay penalty.

Active techniques – As the leakage depends only on the
current input vector, during the idle mode, we can apply the
minimum leakage vector (MLV). Thus, MLV needs to be
determined a priori and incorporated into the circuit. This
technique is known as the Input Vector Control (IVC). For
an n-input module, as the input space grows exponentially
(2n), MLV determination heuristics have been proposed [6],
[7]. Transistor stacking is effective in reducing leakage power.
Hence, several design techniques [15], [16], [17] that favor
increased transistor stacking are proposed.

Compared to the standby techniques, the main advantage
of active techniques is that the circuit can switch idle to
active mode with no delay penalty. For IVC technique the
area penalty occurs due to additional hardware needed to
incorporate MLV into the circuit. Delay penalty is incurred
if this additional hardware is in the critical path of the circuit.

B. Input vector control technique

As IVC has little delay penalty, many researchers have
proposed using IVC leakage power minimization. To the best
of our knowledge, these techniques are at the logic level.

Abdollahi, Fallah, and Pedram [6] propose gate-level leak-
age reduction with two techniques. The first technique is
an input vector control wherein SAT based formulation is
employed to find the minimum leakage vector. The second
technique involves adding nMOS and pMOS transistors to
the gate in order to increase the controllability of the internal
signals. The additional transistors increase the stacking effect
leading to leakage current reduction. The authors report over
70% leakage reduction at the expense of up to 15% delay
penalty.

Gao and Hayes [18] present integer linear programming
and mixed integer linear programming approaches for leakage
reduction by means of input vector control. MILP performs
better than ILP and is 13 times faster. Average leakage current
is about 25% larger than minimum leakage current.

IVC technique does not work effectively for circuits with
large logic depth. Yuan and Qu [7] have proposed a technique
to replace the gates of worst leakage state with other libraries
in active mode. A divide-and-conquer approach is presented
that integrates gate replacement, an optimal MLV searching
algorithm for tree circuits, and a genetic algorithm to connect
the tree circuits. Compared with the leakage achieved by
optimal MLV in small circuits, the gate replacement heuristic
and the divide-and-conquer approach can reduce on average
13% and 17% leakage, respectively.

C. Interval arithmetic

Interval arithmetic (IA) [19] is concerned with arithmetic
operations such as addition and subtraction on intervals. The
intervals can be either discrete or continuous. IA has been ex-
tensively applied in error bound analysis arising in numerical
analysis.

In this work, we are concerned with integer arithmetic
therefore we restrict our discussion to integer intervals. An
interval I = [a, b] represents all integers a ≤ i ≤ b. Further, the
above interval is a closed interval as it includes both extremal
values. We can have an open interval, such as I = (a, b)
where a < i < b. The width of an interval is the difference
between the extremal values |b − a|. If the interval width is
zero, then the interval is referred to as a degenerate interval
(for example [1, 1]). We can represent a given integer, say a,
as a degenerate interval [a, a].

Given two intervals U = [a, b] and V = [c, d], the following

equations hold:

U + V = [a, b] + [c, d]
= [a + c, b + d] (1)

U − V = [a, b]− [c, d]
= [a− d, b− c] (2)

U ∗ V = [a, b] ∗ [c, d]
= [min(a ∗ c, a ∗ d, b ∗ c, b ∗ d),

max(a ∗ c, a ∗ d, b ∗ c, b ∗ d)] (3)
U ÷ V = [a, b]÷ [c, d]

= [min(a÷ c, a÷ d, b÷ c, b÷ d),
max(a÷ c, a÷ d, b÷ c, b÷ d)] (4)
(assuming 0 6∈ [c, d])

An interval [c, d] ⊆ [a, b] if and only if a ≤ c ≤ d ≤ b. As
we will deal with binary operations (addition and multiplica-
tion) we talk in general of an ordered pair of intervals ie., ([a,
b], [c, d]) where the interval [a, b] is for the first input and
[c, d] for the second.

D. Definitions and Terminology

Definition 1: Leakage Power Function, P(V, t, w) re-
turns the leakage power of a module (of type t and bitwidth
w) when input vector V is applied.

The above function is defined for the purpose of presenting
our idea. For example P((2, 3),+, 8) will return the leakage
value of an 8-bit adder with inputs 2 and 3.

Definition 2: Estimated Lowest Leakage, Plow(t, w), is
the lowest leakage value of a functional unit i.e., minimum
P(V, t, w)
Plow(t, w) can be obtained by either lower bound leakage

analysis [20] of the underlying circuit or by simulation.
Definition 3: Optimization Tolerance, ε, is the permiss-

able deviation from the estimated lowest leakage in any
module.

ε is a user-specified constant. For example, if ε = 0.1, we
can tolerate upto 10% increase in the leakage of any module
in the design.

Definition 4: Low Leakage Vector, V(t, w), is an input
vector v of a module of type t and width w, such that

P(v, t, w) ≤ (1 + ε)Plow(t, w).
Definition 5: Low Leakage Interval, L, is an input inter-

val such that for every vector v ∈ L, v is a low leakage vector.
Definition 6: Low Leakage Interval Set, L(t, w), is the

set of all low leakage intervals of a given module of type t
and w.

Definition 7: Data Flow Graph, G(V,E), is a directed
graph such that vi ∈ V represents an operation and e =
(vi, vj) ∈ E represents a data transfer from operation vi to
vj .

We also assume two functions at our disposal, T (op) and
W(op), that return the type and width of a given operation
op, respectively.

III. PROPOSED APPROACH - INTERVAL ARITHMETIC
BASED INPUT VECTOR CONTROL

We first present two motivating examples, and then fomulate
the problem. We describe a Monte Carlo based character-
ization technique to extract low leakage interval set of a

Fig. 1. Example 1 - Interval propagation with no control points

Fig. 2. Example 2 - Interval propagation with control point insertion

functional unit. We then present the heuristic that accepts an
input DFG and determines MLVs at the primary inputs and
internal nodes.

A. Motivating Examples

Example 1: In Figure 1, we show an example DFG with
three adders (A1–A3) and two multiplier (M1, M2). Let us
say the low leakage vector sets are: L(+, 8) = {([2, 4], [6,
8]), ([8,12], [8,12]), ([14, 20], [14,24])} and L(∗, 8) = {([3,
4], [5, 6]), ([9, 10], [12, 12]), ([13, 24], [20, 24])} We start
applying low leakage vectors for A1 and A2 i.e., [2, 4] on
the first input and [6, 8] on the second input. Using interval
arithmetic (Eqn. 1), we compute A1’s and A2’s output range
to be [8, 12]. Thus, the input interval of A3 is ([8, 12], [8,
12]) ∈ L(+, 8). Therefore, it puts A3 in a low leakage mode.
Similarly the computed input interval for M2, i.e., ([16, 24],
[20, 24]) ⊂ ([13, 24], [20, 24]) ∈ L(∗, 8), therefore puts M2
also in low leakage mode. From this example we see that
applying low leakage vectors at the primary inputs can put all
the internal nodes in the DFG in a low leakage state.

Example 2: Now consider the same DFG, however with
different low leakage vector sets: L(+, 8) = {([2, 3], [4, 5])}
and L(∗, 8) = {([10, 14], [12, 16]), ([20, 22], [20, 26])}. We
again apply low leakage vectors on primary inputs (Figure 2).
However, the computed input interval of A3, ([6,8], [6, 8])
does not overlap with the interval in L(+, 8). Therefore, we
will have to introduce a control point at the inputs of A3.
The control point consists of a multiplexor that can be used to
force a low leakage vector in idle state. Similarly, M2 needs a

Fig. 3. Leakage current distribution for 8b adder implemented in 16nm node

Fig. 4. Leakage current distribution for 8b multiplier implemented in 16nm
node

control point. Thus, with two control points we put all modules
in a low leakage state.

As seen from the above two examples, it is possible to
achieve low leakage stage for the entire design by applying
low leakage vectors only at the primary inputs. Our proposed
heuristic attempts to maximize the leakage power savings
while keeping the control overhead to as small as possible.

B. Problem Formulation

Given the following two inputs:
• a data flow graph G(V,E) and
• set of low leakage interval sets,

⋃
t,w L(t, w), for all

distinct operations of type t and width w,
identify low leakage vectors on primary inputs and a set of
control points C such that the following objective functions
are minimized:

∑
vi∈V

P(V, T (vi),W(vi)) (5)

|C| (6)

C. Module Library Characterization

Figures 3 and 4 show the leakage current distribution of
an 8-bit ripple carry adder and an 8-bit parallel multiplier,
respectively. The data for both module instances have been
generated by exhaustive simulation of the layouts implemented
in 16nm technology node. The leakage power values are

measured using nanosim with PTM [13], [21] technology
parameter values for 16nm node.

The leakage current range for 8b adder is [0.084µA, 4.3µA]
and that of the 8b multiplier is [1.4µA, 56µA]. Thus, the
approximiate max-to-min ratio for adder and multiplier are
51 and 40 respectively. For ε=0.1, the number of distinct low
leakage vectors for the adder is 119. The percentage of input
space that puts the adder in a low-leakage state (ε=0.1) is
(119/(28 * 28))*100 = 0.18%. These vectors can be merged
to obtain low leakage intervals. The number of such intervals
is 80. Similarly, for multiplier, number of low leakage vectors
is 490 and the size of the interval set is 329. The percentage
of input space that puts the multiplier in a low-leakage state
(ε=0.1) is (490/(28 * 28))*100 = 0.74%.

As the input space of a n-bit module instance grows ex-
ponentially, exhaustive simulation based low leakage interval
extraction is not feasible. Therefore, we propose a Monte-
Carlo (MC) based approach.

Typically, an MC based approach has four steps: (a) input
space determination, (b) input sampling based on a probability
distribution, (c) computation of property of interest, and (d)
result aggregation.

Given the SPICE-level model of an n-bit module instance,
we perform two successive MC runs. The property of interest
is the leakage power. Both runs are subject to a user-specified
time-limit.
• Run I - Coarse grained MC run: The input space under

consideration is the entire input space, i.e., 22n input
vectors. We uniformly sample the input space and then
simulate the layout with samples to obtain leakage power
values. These power values are sorted in ascending order
and then (ε x 100)% of the values are used to identify
low leakage regions in the input space.

• Run II - Fine grained MC run: In this run, the input space
is restricted to the regions identified in Run I. Further, the
sampling is biased in the neighborhood of low leakage
vectors identified previously. For a given sample, we
accept the sample only if the corresponding leakage
power falls within the [Plow, (1+ε)*Plow] range. The
result aggregation step involves merging input samples
to create set of low leakage intervals.

The proposed MC based approach is scalable to larger
circuits. In case of a parallel multiplier, the time taken by
MC simulation is 6 hrs and 9 hrs for 8b and 16b instances,
respectively. The simulations were carried out on a SunOS
workstation (16 CPUs, 96GB RAM). For 8 bit instance, we
collected 800 samples out of 65536. For a 16 bit instance, we
collected 800 samples out of 4294967298 (65536 x 65536) for
a 16b instance, respectively. We chose to simulate 800 samples
because of the reasonable simulation time. In case of ripple
carry adder, the time taken by the simulation is 5 hrs and 6
hrs for a 8b and 16b instances, respectively. Hence, the input
space explored in 8b and 16b instances are 1.2% and 1.86 x
10−4%, respectively with a sampling interval of 32 and 1024,
respectively.

The tradeoff incurred due to increased sample interval is
suboptimal minimum leakage vector. The MC approach can
be further sped up by increasing the sampling interval. Let
the compilation time for a single Nanosim run in a simulation

1 Algorithm find LLV
2 Inputs: (a) Graph G(V,E); (b) Low Leakage Vector Sets
3 Outputs: Low leakage vectors and control points
4 begin
5 L← Topological Sort(G) /* L is a sorted list */
6 C ← ∅ /* internal control points */
7 foreach vi ∈ L do
8 Let a and b denote input edges of vi

9 c the output edge of vi

10 if vi is a PI node
11 then
12 Ia,b ← L(T (vi),W(vi))
13 C ← C ∪ {a, b}
14 end if
15 Ic ← Interval Propagate(Ia,b, T (vi))
16 Let vj be the successor of vi

17 Let d be the second input of vj

18 /* check for interval containment */
19 contains← FALSE
20 foreach L ∈ L(T (vj),W(vj)) do
21 if L ∩ Ic 6= ∅ then
22 contains← TRUE
23 break
24 end if
25 end for
26 if(contains == FALSE) then
27 /* insert a new control point */
28 Ic,d ← L(T (vj),W(vj))
29 C ← C ∪ {c, d}
30 end if
31 end for
32 end Algorithm

Fig. 5. Algorithm to determine Low Leakage Vector

be t, bit width be n and sample interval be s, simulation
time is inversely proportional to the square of s and directly
proportional to t. Hence, the time complexity of MC based
approach is O((22n/s2)t).

D. Low Leakage Vector Determination

Figure 5 shows the pseudo-code of the proposed heuristic
for low leakage vector determination. It accepts an input DFG
(directed acyclic graph) and low leakage vector sets for dis-
tinct types and operations obtained from the characterization
procedure as described in Section III-C. Breadth First Search
is used to cover all the nodes of the graph.

First the graph is topologically sorted (line 5) to yield a
sort list L. A set C that collect the control points, is initialized
(line 6). The for loop in lines 7–31 visits each node in the
order specified by L. If a node is a PI node (i.e., both inputs
to the node are primary), then the intervals on both inputs are
intialized to the appropriate low leakage vector sets (line 12).
If there are multiple interals that result in low leakage, then an
interval is chosen randomly. Both inputs are added to the set C
(line 13). On line 15, we call a function Interval Propagate()
that accepts an ordered interval pair and the operation type
of the node (i.e., T (vi)). Interval Propagate() implements
the interval arithmetic equations (Eqns. 1–4) and returns an
appropriate output interval Ic. In lines 19–25, we check if the

Fig. 6. Differential Equation Solver

Fig. 7. Elliptic Wave Filter

computed interval is contained in low leakage vector set of
the successor vj . If the check succeeds, then we move onto to
the next node in the list. If the check fails, then a new control
point is inserted by resetting the inputs of node vj to it’s low
leakage vector set (line 28) and adding the inputs of vj to
contol point set.

In the above algorithm we assume only one successor
for each node. This assumption is made to simplify the
presentation of the algorithm. It is straightforward to extend
the algorithm to multiple successors.

IV. EXPERIMENTAL RESULTS

We report the experiment results obtained by applying the
proposed input vector control technique on five datapath-
intensive benchmarks, namely, IIR, FIR, Elliptic, Lattice, and
Differential Equation Solver. As described in Section III-C the
libary is characterized a priori and the low leakage vectors sets
saved. The DFG of each filter is then processed to identify a
low leakage vector. For the experimental results we assume
ε=0.1 (i.e., we can tolerate up to 10% leakage increase in any

Fig. 8. FIR Filter

Fig. 9. IIR Filter

Fig. 10. Lattice Filter

module instance).
The leakage power values are measured at the layout

level using nanosim. We employ the PTM models for 16nm
technology node generated by the online model generation tool
available on the ASU PTM website [13]. We simulate each
layout with 1000 random vectors and measure the dynamic
and subthreshold leakage currents. Figures 6–10 compare
the average dynamic and leakage currents. We can observe
that both leakage and dynamic components are significantly
reduced. The savings in dynamic power are the side-effect of
holding the inputs stable to the circuit. We can also observe the
dominance of subthreshold leakage in deep-sub-micron nodes
(16nm).

Table I tabulates the percentage power savings. We can ob-
serve that significant savings are obtained in leakage, dynamic,
and total power (columns 2,3, and 4). The average savings in
leakage, dynamic, and total powers are 74.4%, 59%, and 70%
respectively.

Table II reports the area penalty and the number of control
points. The area is measured in terms of the number of
transistors in the HSPICE netlist. As we can observe the area
overhead (second column) is reasonable in the range of 0.48%
to 3.93% with an average of 1.9%. The last column reports the
number of control points inserted in the intermediate nodes.

Design Leakage Dynamic Total
Savings (%) Savings (%) Savings(%)

Diffeq (2+, 5*) 77.29 52.79 70.51
EWF (26+, 8*) 68.13 65.11 66.79
FIR (4+, 5*) 77.57 62.52 71.81
IIR (4+, 5*) 79.83 61.47 74.31
Lattice (8+, 5*) 69.46 54.07 65.26

TABLE I
PERCENTAGE POWER SAVINGS

Design Area Control
Overhead(%) Points

Diffeq (2+, 5*) 0.48 1
EWF (26+, 8*) 2.16 8
FIR (4+, 5*) 1.77 4
IIR (4+, 5*) 1.33 3
Lattice (8+, 5*) 3.93 9

TABLE II
AREA PENALTY AND CONTROL POINTS

Design Leakage Savings (%) Area Overhead (%)
[7] Over MLV [7] Random Ours [7] Ours

Diffeq 21.79 32.15 77.29 6.89 0.48
EWF 24.6 34.69 68.13 6.0 2.16
FIR 21.07 32.1 77.57 6.8 1.77
IIR 21.09 32.24 79.83 6.8 1.33
Lattice 23.6 33.33 69.46 6.7 3.93

TABLE III
EXPERIMENT 1 - COMPARISON WITH [7] - MLV AT PIS

The number of control points depends on the percentage of
input space in consideration to create the low leakage intervals.

Our technique is implemented at register transfer level of
abstraction. To the best of our knowledge, there is no work
done at RTL that uses input vector control for leakage reduc-
tion. We, therefore, compared our technique with a technique
from prior work done at gate level. Out of the two relevant
works from literature [6] and [7], [7] is an improvement
over the technique used in [6]. Therefore, we compare with
[7]. As [7] proposes a gate-level replacement algorithm, we
synthesized gate level circuits for our benchmarks and then
ran the algorithm.

We conducted two experiments using the gate replacement
algorithm.

Experiment 1: In this experiment, MLV is provided to each
module instance that receives primary inputs in the circuit
followed by the gate replacement algorithm. Table III shows
the comparison of leakage savings and area overhead in both
the techniques when MLV is applied each module instance
that receives primary inputs. Column 2 shows the improvement
by gate replacement algorithm over a circuit where MLV is
applied at primary inputs. Column 3 shows the improvement
by application of MLV to primary inputs and gate replacement
algorithm over a circuit where a random input vector is applied
to primary inputs.

Experiment 2: In this experiment, MLV is applied to every
module instance in the circuit and gate replacement algorithm
from [7] is applied. Table IV reports similar results.

From these experiments, we demonstrate that the pro-
posed algorithm yields better leakage savings over the gate-
replacement algorithm [7] with smaller area overhead.

V. CONCLUSION

As leakage power is a strong function of current inputs
applied to a circuit, we have formulated the low leakage vector

Design Leakage Savings (%) Area Overhead (%)
[7] Over MLV [7] Random Ours [7] Ours

Diffeq 20.88 32.24 77.29 9.6 0.48
EWF 22.43 33.8 68.13 12.25 2.16
FIR 21.14 32.51 77.57 10.2 1.77
IIR 21.14 32.51 79.83 10.2 1.33
Lattice 21.39 32.75 69.46 10.6 3.93

TABLE IV
EXPERIMENT 1 - COMPARISON WITH [7] - MLV AT ALL DFG NODES

identification in terms of identifying low leakage data inter-
vals. We have successfully leveraged the value propagation in
a data flow graph so that applying low leakage vectors at the
primary inputs will drive most of the internal nodes to a low
leakage state. We conclude that interval arithmetic based input
vector control for RTL leakage minimization is feasible and
significant subthreshold leakage savings can be obtained.

REFERENCES

[1] “International technology roadmap for semiconductor,” 2010.
[2] S. Mutoh et al, “A 1 V multi-threshold voltage CMOS DSP with an

efficient power management technique for mobile phone applications,”
in Proceedings of the IEEE ISSC Conference, Feb 1996, pp. 168–169.

[3] K. Roy, “Leakage Power Reduction in Low-Voltage CMOS Design,”
in Proceedings of the IEEE International Conference on Circuits and
Systems, 1998, pp. 167–173.

[4] M. Powell et al, “Gated-Vdd: A Circuit Technique to Reduce Leakage
in Deep-Submicron Cache Memories,” in Proceedings of ISLPED, 2000,
pp. 90–95.

[5] H. Singhet al, “Enhanced leakage reduction techniques using intermedi-
ate strength power gating,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 15, no. 11, pp. 1215 –1224, nov. 2007.

[6] A. Abdollahi et al,“Leakage current reduction in cmos vlsi circuits by
input vector control,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 12, no. 2, pp. 140 –154, feb. 2004.

[7] L. Yuan and G. Qu, “A combined gate replacement and input vector
control approach for leakage current reduction,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 14, no. 2, pp.
173 –182, feb. 2006.

[8] L. Yan et al, “Combined dynamic voltage scaling and adaptive body
biasing for heterogeneous distributed real-time embedded systems,” in
Computer Aided Design, 2003. ICCAD-2003. International Conference
on, nov. 2003, pp. 30 – 37.

[9] X. He et al, “Adaptive leakage control on body biasing for reducing
power consumption in cmos vlsi circuit,” in Quality of Electronic
Design, 2009. ISQED 2009. Quality Electronic Design, march 2009,
pp. 465 –470.

[10] Y. Lee and T. Kim, “A fine-grained technique of nbti-aware voltage
scaling and body biasing for standard cell based designs,” in Design
Automation Conference (ASP-DAC), 2011 16th Asia and South Pacific,
jan. 2011, pp. 603 –608.

[11] J. Halter and F. Najm, “A gate-level leakage power reduction method
for ultra-low-power cmos circuits,” in Custom Integrated Circuits Con-
ference, 1997., Proceedings of the IEEE 1997, may 1997, pp. 475 –478.

[12] R. Rao et al, “A heuristic to determine low leakage sleep state vectors for
cmos combinational circuits,” in Computer Aided Design, 2003. ICCAD-
2003. International Conference on, nov. 2003, pp. 689 – 692.

[13] “Asu predictive technology model website.” [Online]. Available:
http://ptm.asu.edu/

[14] H. Kawaguchi et al, “A super cut-off cmos (sccmos) scheme for 0.5-v
supply voltage with picoampere stand-by current,” Solid-State Circuits,
IEEE Journal of, vol. 35, no. 10, pp. 1498 –1501, oct 2000.

[15] S. Narendra et al, “Scaling of stack effect and its application for
leakage reduction,” in Low Power Electronics and Design, International
Symposium on, 2001., 2001, pp. 195 –200.

[16] M. C. Johnson et al, “ Leakage control with efficient use of transistor
stacks in single threshold CMOS ,” ITVLSI, vol. 10, no. 1, pp. 1–5,
February 2002.

[17] N. Hanchate and N. Ranganathan, “Lector: a technique for leakage
reduction in cmos circuits,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 12, no. 2, pp. 196 –205, feb. 2004.

[18] F. Gao and J. Hayes, “Exact and heuristic approaches to input vector
control for leakage power reduction,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 25, no. 11, pp.
2564 –2571, nov. 2006.

[19] Ramon E. Moore, “Methods and applications of interval analysis”.
Philadelphia, PA : Siam., 1979.

[20] M. C. Johnson and K. Roy, “Models and Algorithms for Bounds on
Leakage in CMOS Circuits ,” ITCAD, vol. 18, no. 6, pp. 714–725, June
1999.

[21] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” Electron Devices, IEEE Trans-
actions on, vol. 53, no. 11, pp. 2816 –2823, nov. 2006.

