18.3

Fast Algorithms For Slew Constrained
Minimum Cost Buffering

Shiyan Hu, Charles J. Alpertt, Jiang Hu, Shrirang Karandikart, Zhuo Li, Weiping Shi, C. N. Szet
Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843
{hushiyan, jianghu, zhuoli, wshi} @ ece.tamu.edu
fIBM Austin Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
{alpert, shrirang, csze} @us.ibm.com

ABSTRACT

As a prevalent constraint, sharp slew rate is often required
in circuit design which causes a huge demand for buffer-
ing resources. This problem requires ultra-fast buffering
techniques to handle large volume of nets, while also min-
imizing buffering cost. This problem is intensively studied
in this paper. First, a highly efficient algorithm based on
dynamic programming is proposed to optimally solve slew
buffering with discrete buffer locations. Second, a new algo-
rithm is developed to handle the difficult cases in which no
assumption is made on buffer input slew. Third, an adap-
tive buffer selection approach is proposed to efficiently han-
dle slew buffering with continuous buffer locations. Experi-
ments on industrial netlists demonstrate that our algorithms
are very effective and highly efficient: we achieve > 100x
speed up and save up to 40% buffer area over the commonly-
used van Ginneken style buffering.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids - Placement and
Routing; J.6 [Computer-aided Engineering]: Computer-
aided Design

General Terms

Algorithms, Performance, Design

Keywords

Buffer Insertion, Slew Constraint, Physical Design

1. INTRODUCTION

As VLSI technology moves to the 65 nm node and be-
yond, it has been well documented [1, 2] that the number
of buffers on a chip is rising dramatically. Osler [2] cites

*This work is partially supported by SRC under contract
2003-TJ-1124 and 2004-TJ-1205.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

308

two IBM ASIC designs where one-fourth of the gates are
buffers. For some multi-million gate ASICs, more than a
million buffers are required today. This is a surprise to
no one as devices continue to scale more quickly than in-
terconnects. Higher relative interconnect resistance forces
buffers to be placed closer together to achieve optimal per-
formance. In addition, interconnect resistivity also causes
signal integrity to degrade more quickly with each advanc-
ing technology. Thus, buffers need to be inserted on long
interconnects to meet slew constraints, even if these nets
are not timing critical.

In reality, slew constraint is much more prevalent than
timing constraint: it is reported in [2] that only a fraction
(roughly 5-10%) of nets need to be re-buffered for delay op-
timization; for the remaining fraction (roughly 90-95%), the
slew based buffer insertion was sufficient to meet the net’s
timing constraint. In other words, it is sufficient to buffer
all nets to fix slew violations without worrying about delay.
Those small fraction of buffered nets that subsequently show
up as critical can then be re-buffered with a delay based
objective function. In the IBM physical synthesis method-
ology [2], buffers are inserted for satisfying slew constraints
early, so that timing analysis uses legal slew constraints.
Later, buffers on critical nets are ripped up and re-buffered
for delay.

The sheer number of buffers can degrade overall design
performance by forcing the rest of the logic to be spread
further apart to accommodate those buffers. The buffers
themselves are a drain on power and can cause other gates
to be sized to higher power levels since they are now further
apart on the chip. Therefore, a significant part of the per-
formance of the design depends on using as little buffering
resources as possible.

From practical point of view, slew buffering should be as
important as timing driven buffering. Unfortunately, there
is very little previous work on it. For related works that
consider slew and/or noise constraints [3, 4, 5, 6], they still
optimize for delay instead of handling these constraints sep-
arately. Buffering of non-critical nets using these techniques
may result in unnecessary runtime and resource overhead.
Note that the work of [7] also addresses slew constraints
without regards to delay. However, that work does not ac-
tually model slew; it simplifies the slew constraint to be
equivalent to a capacitance constraint which means that in-
terconnect resistivity is not modelled. While appropriate for
very large fanout nets (e.g., over 1000 sinks), it essentially
becomes equivalent to length-based buffering [8]. Length-
based buffering [8] tries to achieve a similar result of slew

buffering in spirit. However, we show that it can be area
inefficient especially in handling multi-fanout nets.

This work proposes a new buffering formulation: find the
minimum area (or cost) buffering solution such that slew
constraints are satisfied. In this formulation, one does not
need to know required arrival time at sinks, so it can be
used earlier in the design flow than traditional buffering. It
can be done totally independently of timing analysis, i.e.,
incremental timing is not required between buffering of in-
dividual nets. The following highly efficient and practical
algorithms are proposed in this paper:

1. For a single buffer type, an optimal linear time solution
is achievable by greedy algorithm. For multiple buffer
types, a very efficient optimal slew buffering algorithm
is designed under the assumption that the input slew
to each buffer is fixed. Experiments show that com-
pared to slew constrained timing buffering, > 100x
speedup is achieved while still saving area.

2. If the input slew to each buffer is not fixed, the dy-
namic programming cannot be easily applied since the
upstream knowledge is needed to compute the input
slew. We propose a graph-theoretic approach based
new algorithm to handle this difficult case. Experi-
mental results demonstrate that up to 40% buffer area
can be further saved.

3. When buffer positions can be freely chosen, slew buffer-
ing may allow more efficient buffer usage. A contin-
uous slew buffering algorithm incorporating adaptive
buffer selection idea is proposed for this purpose. It
handles 1000 nets in only 40 seconds and often extra
10% buffer area saving can be obtained.

2. PRELIMINARIES

The input to the slew buffering problem includes a routing
tree T'= (V, E), where V = {so} UV, UV,,,and ECV x V.
Vertex so is the source vertex, Vs is the set of sink vertices
and V,, is the set of internal vertices. Each sink vertex s € Vj
is associated with sink capacitance Cs. Each edge e € E is
associated with lumped resistance R. and capacitance Ce.
A buffer library B contains different types of buffers. Each
type of buffer b has a cost W}, which can be measured by
area or any other metric, depending on the optimization
objective. Without loss of generality, we assume that the
driver at source so is also in B. A function f : V,, — 27
specifies the types of buffers allowed at each internal vertex.

The slew rate of a signal refers to the rising or falling time
of a signal switching. The slew model employed in this work
is chosen for its simplicity and is essentially equivalent to the
Elmore model for delay. More accurate wire and gate delay
models may be used if more accuracy is desired. Given that
the motivation for the proposed buffering formulation lies in
the requirement to efficiently buffer a large number of nets,
this slew model is appropriate.

The slew model can be explained using a generic example
which is a path p from node v; (upstream) to v; (down-
stream) in a buffered tree. There is a buffer (or the driver)
b. at v;, and there is no buffer between v; and v;. The slew
rate S(v;) at v; depends on both the output slew Sp,, 0wt (Vi)
at buffer b, and the slew degradation S, (p) along path p (or

309

wire slew), and is given by [9]:

S(v7) = \/ St out (V1) + Su(p)2. (1)

The slew degradation Sy, (p) can be computed with Bakoglu’s
metric [10] as

Sw(p) =In9- D(p),

where D(p) is the Elmore delay from v; to v;.

The output slew of a buffer, such as b, at v;, depends on
the input slew at this buffer and the load capacitance seen
from the output of the buffer. Usually, the dependence is
described as a 2-D lookup table. In addition to handling
the general case of arbitrary input slew, our work includes
fast algorithms assuming a fixed input slew which is nor-
mally a conservative estimation. This assumption allows us
to process large volume of nets quickly with small solution
degradation. For fixed input slew, the output slew of buffer
b at vertex v is then given by

Sb,out (’U) =Ry - C(’U) + Ky, (3)

where C'(v) is the downstream capacitance at v, Ry and K
are empirical fitting parameters. This is similar to empiri-
cally derived K-factor equations [11]. We call R the slew
resistance and K the intrinsic slew of buffer 5.

A buffer assignment v is a mapping v : V;, — BU{b} where
b denotes that no buffer is inserted. The cost of a solution
vis W(y) = 3_,c, We. With the above notations, the basic
slew buffering problem can be formulated as follows.
Discrete Slew Constrained Minimum Cost Buffer In-
sertion Problem: Given a binary routing tree T' = (V, E),
possible buffer positions defined using f, and a buffer library
B, to compute a buffer assignment -y such that the total cost
W (~) is minimized such that the input slew at each buffer
or sink is no greater than a constant a.

Note that the continuous slew buffering problem is also
considered in this paper where buffer positions can be freely
chosen in a routing tree.

3. SLEW CONSTRAINED MINIMUM COST
BUFFERING ALGORITHMS

3.1 Discrete Slew Buffering Assuming Fixed
Input Slew

()

3.1.1 Algorithm

Our algorithms share the same dynamic programming
framework as timing buffering [12, 3] in appearance, but
have critical underlying differences which will be analyzed
in Section 3.1.2 and Section 3.1.3.

In the dynamic programming framework, a set of can-
didate solutions are propagated from the sinks toward the
source along the given tree. Each solution =y is characterized
by a three-tuple (C, W, S), where C' denotes the downstream
capacitance at the current node, W denotes the cost of the
solution and S is the accumulated slew degradation S, de-
fined in Eqn. (2). At a sink node, the corresponding solution
has C' equal to the sink capacitance, W = 0 and S = 0. The
solution propagation is accomplished by the following oper-
ations.

Consider to propagate solutions from a node v to its par-
ent node u through edge e = (u,v). A solution ~, at v be-
comes solution 7, at u, which can be computed as C(7,,)

C(vo) + Ce, W(vu) = W(vw) and S(yu) = S(yw) +1n9 - D,
where D = Re(% + C()).

In addition to keeping the unbuffered solution ~,, a buffer
b; can be inserted at u to generate a buffered solution vy, pu s
which can be then computed as C(Vupuf) = Cb;, W (Yu,buf) =
W (7o) + We, and S(u,bus) = 0.

When two sets of solutions are propagated through left
child branch and right child branch to reach a branching
node, they are merged. Denote the left-branch solution set
and the right-branch solution set by I'; and I, respectively.
For each solution 7; € I'; and each solution ~, € I';, the
corresponding merged solution 4’ can be obtained according
to: C(v") = C(m) + C(7),W(y) = W(m) + W(vr) and
S(') = max{S(v),S(yr)}. To ensure that the worst case
in the two branches still satisfies slew constraint, we take
the maximum slew degradation for the merged solution.

For any two solutions 71,72 at the same node, y1 dom-
inates v2 if C(71) < C(y2), W(n) < W(2) and S(y1) <
S(v2). Whenever a solution becomes dominated, it is pruned
from the solution set without further propagation. A solu-
tion v can also be pruned when it is infeasible, i.e., either its
accumulated slew degradation S() or the slew rate of any
downstream buffer in « is greater than the slew constraint.

3.1.2 Critical Differences from Timing Buffering

When a buffer b; is inserted into a solution 7, S(7) is
set to zero and C(v) is set to C(b;). This means that in-
serting one buffer may bring only one new solution, namely,
the one with the smallest W. However, in minimum cost
timing buffering, a buffer insertion may result in many non-
dominated (C, W, Q) tuples with the same C' value, where
Q denotes the require arrival time (RAT).

Consequently, in slew buffering, at each buffer position
along a single branch, at most |B| new solutions can be
generated through buffer insertion since C, S are the same
after inserting each buffer. In contrast, buffer insertion in
the same situation may introduce many new solutions in
timing buffering. This sheds light on why slew buffering can
be much more efficiently computed.

Another important fact is that the slew constraint is in
some sense close to length constraint. In slew buffering, so-
lutions can soon become infeasible if we do not add a buffer
into it and thus many solutions, which are only propagated
through wire insertion, are often removed soon. An extreme
case demonstrating this point is that in standard timing
buffering, the solutions with no buffer inserted can always
live until being pruned by driver given a loose timing con-
straint. This may not happen in slew buffering: this kind
of solutions soon become infeasible as long as the slew con-
straint is not too loose.

Due to these special characteristics of the slew buffering
problem, a linear time optimal algorithm for buffering with
a single buffer type is possible. In timing buffering, it is not
known how to design a polynomial time algorithm in this
case. Refer to Section 3.3 for the details. From these facts,
the basic differences between these two somewhat related
buffering problems are clear.

3.1.3 Implementation Experiences

We are to elaborate some implementation details in dom-
ination checking as well as domination elimination. In the
algorithm, the solution set is stored using a linked list where
elements are in no particular order. The straightforward lin-

310

ear search is carried out into the solution list by each new-
comer for domination checking and meanwhile, the solution
list is updated for domination elimination. This simple im-
plementation gives excellent performance due to the critical
fact that size of solution set here is always small. We usually
have less than 20 non-dominated solutions in each routing
tree, and the typical total runtime over 1000 nets is less than
20 seconds. Therefore, in contrast to using range search tree
to prune the dominated solutions as in [3], the simple linked
list implementation works very well here. We believe that
the simplicity of implementation for slew buffering with fixed
buffer input slew will make it widely used in practice.

One would wonder the effect of introducing the range
search tree into the slew buffering algorithm. As such, the
slew buffering algorithm combined with range search tree
pruning [3] is also tested. Unfortunately, the slew buffer-
ing algorithm is slowed down. This phenomenon is due to
the considerable amount of inherent overhead in maintain-
ing the balanced binary search tree through e.g., rotation
for each insertion/deletion in the data structure.

3.2 Discrete Buffering without Input Slew
Assumptions

In Section 3.1.1, the output slew of a buffer (computed by
Eqn. (3)) does not depend on the input slew. This is valid
since slew resistance Rp,; is obtained by assuming the input
slew for each buffer to be fixed to an upper bound. Cer-
tainly, improvement in buffer area is desired if this assump-
tion is eliminated. As such, a more complicated dynamic
programming algorithm which handles non-fized input slew
is proposed as follows.

Our idea is to approximate continuous-valued input slew
by different small-sized slew bins. That is, the input slew at
each buffer position is discretized into different input slew
bins, each of which covers a range of slew rate. Clearly,
better results can be obtained with finer input slew bins.
Denote by [the number of input slew bins.

p

C

Figure 1: An example of handling non-fixed input
slew.

Suppose that a buffer is to be inserted at position p and
there are three immediate downstream buffers in a solution
~ as shown in Figure 1. As the result upstream from p is
not yet known, the input slew to the buffer can be in any
slew bin.

As such, in addition to C,W,S, each solution is aug-
mented with new tuples L, U, which specify the lower bound
and upper bound of the input slew to these immediate down-
stream buffers, respectively. In other words, the input slew
is required to fall in [L,U). Suppose that viewing at p, we
have n(y) immediate downstream buffers, each of which is
associated with a lower bound L; and an upper bound U;.
Accordingly, there is an S; representing accumulated slew

degradation viewing at each immediate downstream buffer.
For example, in Figure 1, we have (S1, L1, U1) for the buffer
inserted at a, (S2, L2, Uz) for b, and (Ss, L3, Us) for c.

When a buffer is inserted at p, at most | new solutions
are generated. They are with the same C, W, S values but
with different L, U values. We say “at most” since whether
a buffer with a certain input slew bin can be inserted at p
needs to be validated. For a buffer b to be inserted with the
input slew bin g, denote by [Sy,S,) the slew range of g. The
buffer insertion is valid if for each immediate downstream
buffer i (viewing at p, 1 <i < n(y)) in v,

Li(7) < \/Sbout(0.9,C())? + Si(1)2 <Tir), (4)
where Sy out(p, g, C(7y)) is the output slew of the buffer b at
p with g as its input slew bin and C(v) as its downstream
capacitance, and a lookup table is used to obtain its value.
Upon validation, the buffer b is inserted to -y, the number
of immediate downstream n(7y) is set to one, Si(y) is set to
zero, and Li(y) = Sy and Uy (y) = Sy.

It is often valid for a buffer with numerous input slew
bins to be inserted to the same solution . For efficiency
reason, those new solutions are merged after buffer insertion.
That is, after buffer insertion, two solutions 1 and 2 are
merged to form v if C(y1) = C(y2), W(71) = W(y2) and
Ui(71) = Li(y2), where C,W,S of v remain unchanged
while Li(y') = Li(m) and Ui (y') = Ui (72).

Note that in branch merging, the parameter values (S, L, U)
of all immediate downstream buffers for a left-branch solu-
tion 71 and a right-branch solution ~2 are stored together
and n(y') = n(y1) +n(y2).

The definition of domination needs to be accordingly mod-
ified. For two solutions with the same number of imme-
diate downstream buffers, domination is defined solely on
C,W,S;, L;,U;. In particular, the i-th buffer in 7; and that
in 72 may refer to different immediate downstream buffers.
This allows a fairly effective solution pruning procedure.

Given two solutions =1 and -2, we are to decide whether
there is a pairing of immediate downstream buffers of ; and
72, respectively, such that Sy, ;y(v1) < Sryy (V2)s Ly 5y (1)
< Lrygy(v2) and Uz, (1) = Uny(j)(72) for each pair j
where 1 < j < n(vy1) = n(y2), and 7w (-) denotes the permu-
tation of indices of immediate downstream buffers. If this is
the case, together with C'(y1) < C(72), W(y1) < W (72), we
conclude that v1 dominates 2.

An example would be helpful to illustrate the above defi-
nition. Assume that 1,2 both have three immediate down-
stream buffers. Suppose that (S;, L;, U;) for 1 are (3, 10, 60),
(5,30, 65), (3,20,50), and for 72 are (5,25,35),(6,50,55),
(10,15,35). 1 dominates 2 on (S, L,U) since (3,10, 60)
dominates (10, 15, 35), (5,30, 65) dominates (6,50, 55), and
(3,20,50) dominates (5,25, 35).

Given two solutions, we need to answer whether such
pairing exists. The straightforward computation is ineffi-
cient since L,U may heavily overlap. As such, we reduce
it to the maximum bipartite matching problem for an effi-
cient solution. To check whether v1 dominates 72, for each
(Si(71), Li(71),Ui(71)) in 71, a set of tuples, denoted by
1;(1), consisting of all (S;(v2), L;(v2), Uj(72)) in 72 is com-
puted such that the former three-tuple dominates each of the
latter three-tuples. A graph G = (V, E) is constructed as
follows. Represent each three-tuple by a vertex. A vertex
corresponding to the i-th tuple in 1 links to the vertices

311

corresponding to ¥;(v1). A bipartite graph is formed in this
way since there are no links between nodes representing tu-
ples in the same solution. For these two groups of vertices,
the task is to answer whether there is a node-wise pairing
(each from different groups) of cardinality n(v1). We there-
fore reduce the problem to a maximum matching problem,
which is to compute an edge set E’ of maximum cardinality
from E such that each vertex in V is incident to at most
one edge of E’. Domination (on S,L,U) follows if E’ is of
cardinality of n(v1).

3.3 Continuous Slew Buffering

What we have considered so far is the discrete slew buffer-
ing problem. It is expected that the total buffer area can
be reduced if buffer positions are freely chosen in the rout-
ing tree. The following continuous slew buffering algorithm
settles this problem. We begin with a simple case:
Theorem 1: For a single buffer type, the optimal slew
buffering can be computed in linear time.

Proof (Sketch): In essence, the algorithm is only propagating
a single candidate up to the source. To insert buffers along a
single path, we place a buffer as far (i.e., upstream) as pos-
sible from the previously inserted buffer such that the slew
constraint is still satisfied. When proceeding to a branching
point, a buffer is also placed as upstream as possible while
the slew constraint must be satisfied for both branches. It
is easy to see that given n buffer positions and sinks, this
greedy algorithm returns the optimal solution in O(n) time.

Note that the above greedy algorithm can work in either
discrete or continuous case. We now generalize this idea
to handle multiple buffer types. The major difficulty is, of
course, every type of buffers can be inserted at a position.
Within a single branch, after a new solution is generated
(i.e., a buffer is inserted), it is placed into a priority queue,
which is decreasingly ordered by the distance from the cur-
rent buffer position to the root. The first element in the
queue is then extracted as the next solution to be processed.
The definition of domination (namely, 71 dominates v2) goes
the same as before except that 1 now needs to reside at a
position no lower than ;.

The above exponential algorithm is found to be inefficient
by our experiment. As such, an approximation algorithm
through adaptively selecting candidate buffers is proposed.
All buffers with area less than a threshold (called filtered
buffers) are first increasingly sorted according to their slew
resistance. For a slew constraint «, the first [¢-(e® —1)-|B]]
buffers (note that all |B| buffers will be chosen when the
value exceeds the number of filtered buffers) are selected to
form the library for buffer insertion, where ¢ is a constant
and is experimentally determined to be 0.2. The idea behind
this selection criterion reads as follows. Roughly speaking,
for tight slew constraint, there will be many non-dominated
solutions and thus our computation may only focus on a
small number of buffers in order to reduce the size of the
solution set. For loose slew constraint, a buffer will be in-
serted with a large gap from the previously inserted buffer
and thus the solution set might not be very large. We can
therefore choose more buffers (exponentially more in our
case). Varying c, one can achieve different tradeoff between
solution quality and runtime.

4. DISCUSSION OF RELATED APPROACH

We refer to van Ginneken/Lillis” algorithm as VGL and
the discrete slew buffering algorithm with fixed input slew
as SB. In order to make a meaningful comparison between
them, we first modify VGL to handle a slew constraint,
without modifying its delay objective function. The new
slew constrained VGL is referred to as VGL+S. In this way,
we can investigate the difference between simply handling
the slew constraint to optimize delay versus handling the
slew constraint to optimize cost. For this, the three-tuple
(C,W,Q) is augmented to (C,W,Q,S), where @ denotes
the required arrival time. Note that domination in timing
buffering is defined on C, W, @ but not on S, while S is only
responsible for eliminating infeasible solutions. In contrast,
domination in slew buffering is defined on C, W, S but not on
Q. Therefore, VGL4S algorithm may delete optimal solu-
tions based on timing information while our new algorithm,
with domination defined on C, W, S can find the minimum
cost solution satisfying slew constraint. The experiments in
the next section report the timing-driven buffering solution
as the minimum cost solution at the driver, thereby slack
at the driver plays no role. In this way, the impact of the
actual change in optimization strategy for area instead of
delay is considered.

S. EXPERIMENTAL RESULTS

5.1 Experiment setup

For convenience, all algorithms in comparison are listed
below together with their abbreviations.

e SB: discrete slew buffering algorithm with fixed input
slew.

e SB+NI: discrete slew buffering with non-fixed input
slew.

e C-SB: continuous slew buffering with fixed input slew.

e VGL: van Ginneken/Lillis’ min-cost timing buffering
algorithm.

e VGL+S: slew constrained VGL.

All algorithms are implemented in C++ and are tested
on a Pentium IV computer with a 3.2GHz CPU and 1G
memory. Our test cases are extracted from an industrial
ASIC chip, which consist of 1000 nets with more than 50
thousand nodes including sinks, branching nodes and buffer
positions. Among them, 757 nets have < 5 sinks and all the
remaining nets have < 20 sinks. The sink capacitances range
from 2.5fF to 200fF. The wire resistance is 0.562/um and
the wire capacitance is 0.48 f F'/um.

The buffer library consists of 48 buffers, in which 23 are
non-inverting buffers and 25 are inverting buffers. Normal-
ized buffer areas range from 5 to 34, slew resistances range
from 0.18ns/pF to 29.3ns/pF, and input capacitances range
from 2.1fF to 76.0fF.

5.2 Comparison with timing buffering

We first compare SB with VGL+S, and results are sum-
marized in Table 1. Here “area saving” refers to the percent-
age difference in area, “speed up” refers to the percentage
difference in CPU time (seconds), and the slew constraint
is given in nanoseconds. Note that in VGL+S, range search
tree pruning is implemented as in [3]. We make the following
observations:

312

e The number of buffers decreases and the area decreases
for both algorithms as the slew constraint loosens.
This makes sense since a looser constraint means that
buffers can be spaced further apart.

e SB is more efficient in area. For example, with a 1.0 ns
slew constraint, the area savings is 5.9%. Note that the
area savings increases with the slew constraint. It hap-
pens since VGL+S has fewer infeasible (i.e., violating
slew constraints) solutions to throw away with a looser
slew constraint, hence it is more likely to sacrifice area
for delay. With a tight slew constraint, VGL+S has
more limited choices since it must meet the slew con-
straint. Indeed, one can also see this by considering
the number of candidates at the driver.

e The slew buffering algorithm SB is much more efficient.
Despite considering all 48 buffers in the library, it runs
in just a few seconds on 1000 nets. Furthermore, it
runs over 100 times faster than the timing buffering
algorithm for a slew constraint o > 1.1. The main rea-
son for this fact is that there is a significantly smaller
set of non-dominated solutions in slew buffering than
in timing buffering. For example, when o = 1.0, we
have only 12 solutions per net in the slew buffering,
while the number is 310 in the slew constrained tim-
ing buffering. This is caused by the fact that slew
gets to be reset to zero whenever a buffer is inserted,
while delay has to be propagated up the entire tree.
In practice, the runtime is virtually linear.

e Comparing slack at driver, one sees that slew buffering
achieves significant improvement in runtime with only
slight scarification in slack. This suggests a new fast
approximation for minimum cost timing driven buffer-
ing using our slew buffering algorithm.

It is worth mentioning that the range search tree prun-
ing technique, when incorporated into SB, slows down the
algorithm as indicated by our experiment. For example,
when the slew constraint is 1.0, SB with range search tree
returns the solution in 46.2 seconds compared to 6.1 seconds
by the one without it. This fact is due to the considerable
amount of inherent overhead in maintaining the balanced
range search tree data structure.

5.3 Slew buffering with non-fixed input slew
and continuous slew buffering

Results of SB+NI and C-SB are summarized in Table 2.
Area saving here refers to comparison to discrete slew buffer-
ing with fixed input slew, i.e., SB. We observe the following:

e SB+NI can save up to 40% area over SB. In SB+NI,
the number of input slew bins to each buffer is 21.
For each slew bin, downstream capacitance is also dis-
cretized into 21 capacitance bins in the lookup table.
With very tight slew constraint, SB4+NI saves much
more area over SB. It is the case since the actual in-
put slew is significantly smaller than the pre-set upper
bound.

e SB+NI becomes slower with tighter slew constraint
since the size of the solution set becomes much larger
as more buffers are inserted.

e In slew buffering, tighter constraint causes excessive
buffer insertion. If the candidate buffer positions are
not pre-set carefully in discrete slew buffering, we may
often have to insert buffers in a very inefficient way.

Table 1: Comparison of discrete slew buffering and slew constrained timing buffering. #S@Dr: # non-
dominated solutions at driver.
Optimal Discrete Slew Buffering (SB) Slew Constrained Timing Buffering (VGL+S) Ratio
Slew constraint (ns) | Area | # Buf | Slack | #S@Dr | CPU (s) | Area | # Buf | Slack | #S@Dr | CPU (s) | Area Saving | Speed up

0.3 49139 6545 8525 61 16.4 49804 7273 8529 299 374.1 1.4% 22.8
0.4 32738 6064 8585 53 15.3 34889 8713 8813 269 394.2 6.6% 25.8
0.5 23840 5124 8434 39 12.5 25392 7618 8755 258 437.1 6.5% 35.0
0.6 18512 4074 8643 26 9.3 19459 5237 8776 271 475.3 5.1% 51.1
0.7 15464 3529 8623 21 8.2 16354 4511 8740 283 489.5 5.8% 59.7
0.8 13231 3192 8504 16 7.4 14107 4270 8678 289 522.3 6.6% 70.6
0.9 11509 2933 8470 13 6.7 12170 3724 8600 305 559.0 5.7% 83.4
1.0 10231 2657 8436 12 6.1 10838 3337 8550 310 586.3 5.9% 96.1
1.1 9224 2362 8413 11 5.8 9831 3023 8528 312 602.0 6.6% 103.8
1.2 8376 2146 8392 10 5.9 8949 2754 8487 320 621.4 6.8% 105.3
1.3 7714 1972 8347 9 5.6 8315 2569 8442 323 638.5 7.8% 114.0
1.4 7143 1834 8296 9 5.7 7709 2404 8406 328 654.0 7.9% 114.7
1.5 6655 1695 8263 8 5.5 7214 2255 8381 334 671.7 8.4% 122.1
2.0 5189 1293 8016 6 4.8 5744 1850 8217 342 737.5 10.7% 153.6
3.0 3525 817 7694 5 4.9 4009 1304 8026 356 796.8 13.7% 162.6

6.

Table 2: Results of slew buffering with non-fixed input slew and continuous slew buffering.

Discrete Slew Buffering With Non-Fixed Input Slew (SB+NI) Continuous Slew Buffering (C-SB)
Slew constraint (ns) Area | # Buf | CPU (s) Area Saving Area | # Buf | CPU (s) | Area Saving

0.3 35148 7114 992.1 39.8% 38905 6616 2.7 26.3%
0.4 25018 5666 931.7 30.9% 28745 4865 2.8 13.9%
0.5 19797 4326 762.8 20.4% 21184 4284 9.4 12.5%
0.6 16528 3772 569.3 12.0% 16930 4990 39.0 9.3%
0.8 12129 3145 397.4 9.1% 11573 3063 27.7 14.3%
1.0 9629 2488 337.3 6.3% 9330 2484 21.7 9.7%
1.1 8968 2279 334.3 2.9% 8497 2222 19.1 8.6%
1.4 6947 1790 302.8 2.8% 6806 1736 16.2 5.0%
1.5 6252 1660 323.3 6.4% 6388 1645 14.8 4.2%
2.0 4813 1165 221.3 7.8% 5089 1271 9.5 2.0%
3.0 3390 775 194.3 3.9% 3511 812 4.6 0.3%

Continuous slew buffering (C-SB) significantly allevi-
ates this problem and results in up to 26% improve-
ment in buffer area.

C-SB runs very fast due to our adaptive procedure for
buffer selection. If C-SB is carried out without buffer
selection procedure, the algorithm becomes very slow.
For example, we obtain a solution with buffer area
9291 in 1596.5 seconds for a = 1.0. Compared to C-SB
with buffer selection, it is only 9330/9291 — 1 = 0.4%
better in buffer area, however, it is 1596.5/21.7 > 70x
slower.

CONCLUSION

The slew buffering problem is intensively studied in this

paper. Three new algorithms are proposed, namely, a slew
buffering algorithm with the assumption of fixed input slew,
a more sophisticated algorithm without this assumption,
and a very efficient continuous slew buffering algorithm. Ex-
perimental results demonstrate that new algorithms run one
to two orders of magnitude faster than the widely-used tim-
ing buffering algorithm and meanwhile they can obtain sig-
nificant amount of area saving. Future work seeks to incor-
porate our results into a physical synthesis flow.

7.

REFERENCES

[1] P. Saxena and N. Menezes and P. Cocchini and D.A.

Kirkpatrick, “Repeater scaling and its impact on CAD,” IEEE
Transactions on Computer-Aided Design of Integrated
Clircuits and Systems, vol. 23, no. 4, pp. 451-463, 2004.

[2] P.J. Osler, “Placement driven synthesis case studies on two sets

of two chips: hierarchical and flat,” in Proceedings of the ACM

3

(4]

(5]

(6]

(7]

8l

(9l

(10]

(11]

(12]

313

International Symposium on Physical Design, pp. 190-197,
2004.

J. Lillis and C.-K. Cheng and T.-T.Y. Lin, “Optimal wire
sizing and buffer insertion for low power and a generalized
delay model,” IEEE Journal of Solid State Circuits, vol. 31,
no. 3, pp. 437-447, 1996.

N. Menezes and C.-P. Chen, “Spec-based repeater insertion and
wire sizing for on-chip interconnect,” in Proceedings of the
IEEE International Conference on VLSI Design, pp. 476-483,
1999.

C.J. Alpert and A. Devgan and S.T. Quay, “Buffer insertion
for noise and delay optimization,” in Proceedings of the Design
Automation Conference, pp. 362-367, 1998.

——, “Buffer insertion with accurate gate and interconnect
delay computation,” in Proceedings of the Design Automation
Conference, pp. 479-484, 1999.

C.J. Alpert and A.B. Kahng and B. Liu and I. Mandoiu and A.
Zelikovsky, “Minimum-buffered routing of non-critical nets for
slew rate and reliability control,” in Proceedings of the
International Conference on Computer Aided Design, pp.
408-415, 2001.

C.J. Alpert and J. Hu and S.S. Sapatnekar and P.G.
Villarrubia, “A practical methodology for early buffer and wire
resource allocation,” in Proceedings of the Design Automation
Conference, pp. 189-194, 2001.

C.V. Kashyap and C.J. Alpert and F. Liu and A. Devgan,
“Closed form expressions for extending step delay and slew
metrics to ramp inputs,” in Proceedings of the International
Symposium on Physical Design, pp. 24-31, 2003.

H.B. Bakoglu, Circuits, Interconnects, and Packaging for
VLSI. Addison-Wesley Publishing Company, 1990.

N.H. Weste and K. Eshraghian, Principles of CMOS VLSI
Design. Addison Wesley, 1993, pp. 221-223.

L.P.P.P. van Ginneken, “Buffer placement in distributed
RC-tree networks for minimal Elmore delay,” in Proceedings of
the IEEE International Symposium on Circuits and Systems,
pp. 865-868, 1990.

